STRINGSTRING
ku ku ligB ligB recN recN dinB-2 dinB-2 uvrD-2 uvrD-2 ligA-2 ligA-2 mutM-2 mutM-2 CCH89714.1 CCH89714.1 CCH89713.1 CCH89713.1 recA recA lexA lexA uvrB uvrB uvrA-2 uvrA-2 recR recR mutM mutM recF recF nfo nfo CCH88891.1 CCH88891.1 dinB dinB polA polA ruvC ruvC ruvA ruvA ruvB ruvB CCH88622.1 CCH88622.1 nth nth disA disA radA radA CCH86342.1 CCH86342.1 mfd mfd recO recO uvrC uvrC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
kuDNA end-binding protein Ku; With LigD forms a non-homologous end joining (NHEJ) DNA repair enzyme, which repairs dsDNA breaks with reduced fidelity. Binds linear dsDNA with 5'- and 3'- overhangs but not closed circular dsDNA nor ssDNA. Recruits and stimulates the ligase activity of LigD. Belongs to the prokaryotic Ku family. (331 aa)
ligBATP-dependent DNA ligase; DNA ligase that seals nicks in double-stranded DNA during DNA replication, DNA recombination and DNA repair. (510 aa)
recNDNA repair protein recN; May be involved in recombinational repair of damaged DNA. (603 aa)
dinB-2DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (441 aa)
uvrD-2DNA/RNA helicase, superfamily I; Function of strongly homologous gene; enzyme; Belongs to the helicase family. UvrD subfamily. (1099 aa)
ligA-2DNA ligase; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA; Belongs to the NAD-dependent DNA ligase family. LigA subfamily. (722 aa)
mutM-2Formamidopyrimidine-DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. (294 aa)
CCH89714.1DNA glycosylase; Function of strongly homologous gene; enzyme. (283 aa)
CCH89713.1DNA glycosylase; Function of strongly homologous gene; enzyme. (284 aa)
recARecombinase A (recA); Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (346 aa)
lexALexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (268 aa)
uvrBUvrABC system protein B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate and [...] (705 aa)
uvrA-2UvrABC system protein A (UvrA protein) (Excinuclease ABC subunit A)(Excinuclease ATPase subunit); The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (978 aa)
recRRecombination protein recR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (198 aa)
mutMDNA-(Apurinic or apyrimidinic site) lyase; Function of strongly homologous gene; enzyme; Belongs to the FPG family. (289 aa)
recFDNA replication and repair protein recF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP; Belongs to the RecF family. (393 aa)
nfoEndonuclease IV with intrinsic 3'-5' exonuclease activity; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic sites (AP sites) to produce new 5'-ends that are base-free deoxyribose 5-phosphate residues. It preferentially attacks modified AP sites created by bleomycin and neocarzinostatin. (293 aa)
CCH88891.1DNA polymerase III, alpha subunit; Function of strongly homologous gene; enzyme; Belongs to the DNA polymerase type-C family. DnaE2 subfamily. (1245 aa)
dinBDNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (411 aa)
polADNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. (891 aa)
ruvCCrossover junction endodeoxyribonuclease ruvC (Holliday junction nuclease ruvC); Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (196 aa)
ruvAHolliday junction ATP-dependent DNA helicase ruvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (212 aa)
ruvBHolliday junction DNA helicase ruvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (375 aa)
CCH88622.1Putative 3-methyladenine DNA glycosylase; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the DNA glycosylase MPG family. (197 aa)
nthEndonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. (270 aa)
disADNA integrity scanning protein disA; Has also diadenylate cyclase activity, catalyzing the condensation of 2 ATP molecules into cyclic di-AMP (c-di-AMP). c-di-AMP likely acts as a signaling molecule that may couple DNA integrity with a cellular process. (360 aa)
radADNA repair protein radA homolog; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. (451 aa)
CCH86342.1DNA glycosylase; Function of strongly homologous gene; enzyme; Belongs to the FPG family. (269 aa)
mfdTranscription-repair-coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1184 aa)
recODNA repair protein recO; Involved in DNA repair and RecF pathway recombination. (248 aa)
uvrCExcinuclease, UvrABC system protein C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (689 aa)
Your Current Organism:
Modestobacter marinus
NCBI taxonomy Id: 477641
Other names: CGMCC 4.5581, DSM 45201, M. marinus, Modestobacter marinus Xiao et al. 2011, Modestobacter sp. 42H12-1, strain 42H12-1
Server load: low (8%) [HD]