STRINGSTRING
ctaB ctaB ctaA ctaA ctaB-2 ctaB-2 AMA52180.1 AMA52180.1 AMA52181.1 AMA52181.1 AMA52182.1 AMA52182.1 ctaF ctaF qoxD qoxD qoxC qoxC qoxB qoxB AMA54323.1 AMA54323.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ctaBProtoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group; Belongs to the UbiA prenyltransferase family. Protoheme IX farnesyltransferase subfamily. (320 aa)
ctaAHeme A synthase; Catalyzes the oxidation of the C8 methyl side group on heme O porphyrin ring into a formyl group; Belongs to the COX15/CtaA family. Type 1 subfamily. (306 aa)
ctaB-2Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group; Belongs to the UbiA prenyltransferase family. Protoheme IX farnesyltransferase subfamily. (305 aa)
AMA52180.1Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (356 aa)
AMA52181.1Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (622 aa)
AMA52182.1Cytochrome B oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (207 aa)
ctaFCytochrome B6; Derived by automated computational analysis using gene prediction method: Protein Homology. (110 aa)
qoxDQuinol oxidase subunit 4; Derived by automated computational analysis using gene prediction method: Protein Homology. (124 aa)
qoxCCytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa)
qoxBCytochrome ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (649 aa)
AMA54323.1Cytochrome ubiquinol oxidase subunit II; Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Subunit II transfers the electrons from a quinol to the binuclear center of the catalytic subunit I. (318 aa)
Your Current Organism:
Bacillus subtilis inaquosorum
NCBI taxonomy Id: 483913
Other names: B. subtilis subsp. inaquosorum, BGSC 3A28, Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. inaquosorum Rooney et al. 2009, DSM 22148, KCTC 13429, NRRL B-23052
Server load: low (22%) [HD]