node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AJR23317.1 | AJR24160.1 | TZ53_05665 | TZ53_10880 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.910 |
AJR23317.1 | acsA | TZ53_05665 | TZ53_03290 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.943 |
AJR23317.1 | acsA-2 | TZ53_05665 | TZ53_08505 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.943 |
AJR24160.1 | AJR23317.1 | TZ53_10880 | TZ53_05665 | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.910 |
AJR24160.1 | AJR26518.1 | TZ53_10880 | TZ53_19615 | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Betaine-aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. | 0.910 |
AJR24160.1 | acsA | TZ53_10880 | TZ53_03290 | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.937 |
AJR24160.1 | acsA-2 | TZ53_10880 | TZ53_08505 | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.937 |
AJR26518.1 | AJR24160.1 | TZ53_19615 | TZ53_10880 | Betaine-aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.910 |
AJR26518.1 | acsA | TZ53_19615 | TZ53_03290 | Betaine-aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.943 |
AJR26518.1 | acsA-2 | TZ53_19615 | TZ53_08505 | Betaine-aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.943 |
acsA | AJR23317.1 | TZ53_03290 | TZ53_05665 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.943 |
acsA | AJR24160.1 | TZ53_03290 | TZ53_10880 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.937 |
acsA | AJR26518.1 | TZ53_03290 | TZ53_19615 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | Betaine-aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. | 0.943 |
acsA | acsA-2 | TZ53_03290 | TZ53_08505 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.901 |
acsA-2 | AJR23317.1 | TZ53_08505 | TZ53_05665 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.943 |
acsA-2 | AJR24160.1 | TZ53_08505 | TZ53_10880 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.937 |
acsA-2 | AJR26518.1 | TZ53_08505 | TZ53_19615 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | Betaine-aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. | 0.943 |
acsA-2 | acsA | TZ53_08505 | TZ53_03290 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.901 |