Your Input: | |||||
AJR22650.1 | Derived by automated computational analysis using gene prediction method: Protein Homology. (209 aa) | ||||
AJR23508.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (328 aa) | ||||
AJR23509.1 | Cytochrome C oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (630 aa) | ||||
AJR23510.1 | Cytochrome C oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa) | ||||
ctaA | Heme A synthase; Catalyzes the oxidation of the C8 methyl side group on heme O porphyrin ring into a formyl group; Belongs to the COX15/CtaA family. Type 2 subfamily. (348 aa) | ||||
AJR24340.1 | Cytochrome C oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (337 aa) | ||||
AJR24341.1 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (555 aa) | ||||
ctaB | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (306 aa) | ||||
ctaG | Cytochrome C oxidase assembly protein; Exerts its effect at some terminal stage of cytochrome c oxidase synthesis, probably by being involved in the insertion of the copper B into subunit I; Belongs to the COX11/CtaG family. (191 aa) | ||||
AJR24344.1 | Cytochrome B562; Derived by automated computational analysis using gene prediction method: Protein Homology. (276 aa) | ||||
AJR24972.1 | Derived by automated computational analysis using gene prediction method: Protein Homology. (124 aa) | ||||
AJR25693.1 | Arabinose ABC transporter permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (443 aa) | ||||
AJR25694.1 | Ubiquinol oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. (377 aa) | ||||
AJR25695.1 | Cytochrome o ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (667 aa) | ||||
AJR25696.1 | Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (207 aa) | ||||
AJR25697.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (145 aa) | ||||
AJR25698.1 | Surfeit locus 1 family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (241 aa) | ||||
AJR25699.1 | Histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (440 aa) | ||||
AJR25700.1 | Chemotaxis protein CheY; Derived by automated computational analysis using gene prediction method: Protein Homology. (176 aa) | ||||
AJR25919.1 | Cytochrome C oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (289 aa) | ||||
AJR25920.1 | Cytochrome C oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (576 aa) | ||||
AJR25921.1 | Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa) | ||||
AJR25922.1 | Bb3-type cytochrome oxidase subunit IV; Derived by automated computational analysis using gene prediction method: Protein Homology. (228 aa) |