Your Input: | |||||
AJR22484.1 | Branched-chain alpha-keto acid dehydrogenase subunit E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (431 aa) | ||||
AJR22485.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (779 aa) | ||||
AJR22721.1 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (486 aa) | ||||
AJR26136.1 | Pyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (460 aa) | ||||
acsA | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (647 aa) | ||||
AJR23317.1 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (491 aa) | ||||
AJR23426.1 | Alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily. (370 aa) | ||||
AJR23643.1 | Aldose epimerase; Converts alpha-aldose to the beta-anomer. (378 aa) | ||||
AJR23731.1 | Catalyzes the oxidation of acetaldehyde, benzaldehyde, propionaldehyde and other aldehydes; Derived by automated computational analysis using gene prediction method: Protein Homology. (506 aa) | ||||
AJR23740.1 | Dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (580 aa) | ||||
acsA-2 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (650 aa) | ||||
acsA-3 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (650 aa) | ||||
AJR24192.1 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (475 aa) | ||||
glpX | Type II fructose 1,6-bisphosphatae; in Escherichia coli this protein forms a dimer and binds manganese; Derived by automated computational analysis using gene prediction method: Protein Homology. (327 aa) | ||||
AJR24814.1 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (466 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (246 aa) | ||||
AJR26447.1 | Alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa) | ||||
AJR25037.1 | Zinc-binding dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (351 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (424 aa) | ||||
pdhA | Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (358 aa) | ||||
AJR25139.1 | Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2. (463 aa) | ||||
AJR25337.1 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (496 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (501 aa) | ||||
AJR25576.1 | Pyruvate phosphate dikinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the PEP-utilizing enzyme family. (900 aa) | ||||
AJR25583.1 | Phosphoglucomutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (542 aa) | ||||
AJR26518.1 | Betaine-aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (491 aa) | ||||
AJR25662.1 | E3 component of alpha keto acid dehydrogenase complexes LpdC; forms a homodimer; binds one molecule of FAD monomer; catalyzes NAD+-dependent oxidation of dihydrolipoyl cofactors that are covalently linked to the E2 component; Derived by automated computational analysis using gene prediction method: Protein Homology. (465 aa) | ||||
AJR25664.1 | Branched-chain alpha-keto acid dehydrogenase subunit E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (432 aa) | ||||
AJR25685.1 | Glucokinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial glucokinase family. (321 aa) | ||||
gpmA | Phosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (228 aa) | ||||
AJR25794.1 | Fructose-1,6-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (298 aa) | ||||
pgk | Phosphoglycerate kinase; Converts 3-phospho-D-glycerate to 3-phospho-D-glyceroyl phosphate during the glycolysis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (400 aa) | ||||
gapA | Glyceraldehyde-3-phosphate dehydrogenase; Required for glycolysis; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (336 aa) | ||||
AJR25823.1 | Epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (290 aa) | ||||
fbp | Fructose 1,6-bisphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FBPase class 1 family. (335 aa) | ||||
pckA | Phosphoenolpyruvate carboxykinase; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. (531 aa) | ||||
AJR26048.1 | Aldose epimerase; Converts alpha-aldose to the beta-anomer. (385 aa) |