Your Input: | |||||
APV34513.1 | 3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (711 aa) | ||||
APV34514.1 | acetyl-CoA acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (401 aa) | ||||
APV34518.1 | Glucose dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (800 aa) | ||||
APV34536.1 | (2E,6E)-farnesyl diphosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FPP/GGPP synthase family. (302 aa) | ||||
APV34558.1 | Geranylgeranyl diphosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FPP/GGPP synthase family. (325 aa) | ||||
cysG | uroporphyrinogen-III C-methyltransferase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. Belongs to the precorrin methyltransferase family. In the N-terminal section; belongs to the precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase family. (464 aa) | ||||
APV34567.1 | Alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa) | ||||
ribB | 3,4-dihydroxy-2-butanone-4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate. (219 aa) | ||||
panD | Aspartate 1-decarboxylase; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine. (126 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (317 aa) | ||||
ispE | 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. (273 aa) | ||||
hemA | glutamyl-tRNA reductase; Catalyzes the NADPH-dependent reduction of glutamyl-tRNA(Glu) to glutamate 1-semialdehyde (GSA). (430 aa) | ||||
APV34593.1 | Flavodoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (183 aa) | ||||
gltA | Citrate (Si)-synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (424 aa) | ||||
APV37463.1 | Succinate dehydrogenase, cytochrome b556 subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (130 aa) | ||||
sdhD | Succinate dehydrogenase, hydrophobic membrane anchor protein; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (121 aa) | ||||
APV34603.1 | Succinate dehydrogenase flavoprotein subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (631 aa) | ||||
APV34604.1 | Succinate dehydrogenase iron-sulfur subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (236 aa) | ||||
APV37464.1 | 2-oxoglutarate dehydrogenase E1 component; Derived by automated computational analysis using gene prediction method: Protein Homology. (946 aa) | ||||
odhB | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (405 aa) | ||||
lpdA | Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (477 aa) | ||||
sucC | succinate--CoA ligase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa) | ||||
sucD | succinate--CoA ligase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (296 aa) | ||||
APV34627.1 | Glycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glycerate kinase type-1 family. (387 aa) | ||||
APV37465.1 | Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent glycerol-3-phosphate dehydrogenase family. (506 aa) | ||||
pckG | Phosphoenolpyruvate carboxykinase; Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle; Belongs to the phosphoenolpyruvate carboxykinase [GTP] family. (609 aa) | ||||
APV34635.1 | Diacylglycerol kinase; Recycling of diacylglycerol produced during the turnover of membrane phospholipid. (125 aa) | ||||
APV34654.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (283 aa) | ||||
APV34655.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (335 aa) | ||||
lysA | Diaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (416 aa) | ||||
dapF | Diaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (281 aa) | ||||
serC | Phosphoserine transaminase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (359 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (210 aa) | ||||
purM | Phosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (356 aa) | ||||
fbp | Fructose-bisphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FBPase class 1 family. (324 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1278 aa) | ||||
APV34792.1 | Aspartate aminotransferase; Catalyzes the formation of oxalozcetate and L-glutamate from L-aspartate and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (410 aa) | ||||
APV34799.1 | Type I glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (485 aa) | ||||
proB | Glutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (377 aa) | ||||
APV34893.1 | acetyl/propionyl-CoA carboxylase subuit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (578 aa) | ||||
APV34894.1 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (392 aa) | ||||
hemE | Uroporphyrinogen decarboxylase; Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III. (357 aa) | ||||
trpC | Indole-3-glycerol phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (268 aa) | ||||
trpD | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (349 aa) | ||||
APV34921.1 | Anthranilate synthase component II; Derived by automated computational analysis using gene prediction method: Protein Homology. (194 aa) | ||||
ubiC | Chorismate--pyruvate lyase; Removes the pyruvyl group from chorismate, with concomitant aromatization of the ring, to provide 4-hydroxybenzoate (4HB) for the ubiquinone pathway; Belongs to the UbiC family. (165 aa) | ||||
ubiA | 4-hydroxybenzoate polyprenyltransferase; Catalyzes the prenylation of para-hydroxybenzoate (PHB) with an all-trans polyprenyl group. Mediates the second step in the final reaction sequence of ubiquinone-8 (UQ-8) biosynthesis, which is the condensation of the polyisoprenoid side chain with PHB, generating the first membrane-bound Q intermediate 3-octaprenyl-4-hydroxybenzoate. (294 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (427 aa) | ||||
purH | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (524 aa) | ||||
cyoE | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (292 aa) | ||||
APV37481.1 | Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family. (792 aa) | ||||
APV34962.1 | AMP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (548 aa) | ||||
coq7 | Demethoxyubiquinone hydroxylase family protein; Catalyzes the hydroxylation of 2-nonaprenyl-3-methyl-6- methoxy-1,4-benzoquinol during ubiquinone biosynthesis. (211 aa) | ||||
APV34976.1 | Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (879 aa) | ||||
miaA | tRNA (adenosine(37)-N6)-dimethylallyltransferase MiaA; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family. (314 aa) | ||||
glcB | Malate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA; Belongs to the malate synthase family. GlcB subfamily. (720 aa) | ||||
APV35078.1 | 3-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (363 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa) | ||||
APV35172.1 | acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa) | ||||
pheA | Chorismate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (369 aa) | ||||
aroA | Bifunctional prephenate dehydrogenase/3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (748 aa) | ||||
putA | Delta-1-pyrroline-5-carboxylate dehydrogenase; Oxidizes proline to glutamate for use as a carbon and nitrogen source; In the C-terminal section; belongs to the aldehyde dehydrogenase family. (1255 aa) | ||||
APV35317.1 | acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (406 aa) | ||||
APV35318.1 | Cysteine synthase A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (332 aa) | ||||
APV35320.1 | Phosphatidate cytidylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (314 aa) | ||||
APV35347.1 | enoyl-CoA hydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (262 aa) | ||||
APV35360.1 | 3-oxoadipyl-CoA thiolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (402 aa) | ||||
BEN76_04810 | 3-dehydroquinate dehydratase; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology. (486 aa) | ||||
APV35368.1 | Glucose dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (809 aa) | ||||
APV35376.1 | acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (379 aa) | ||||
APV35379.1 | P-hydroxycinnamoyl CoA hydratase/lyase; Catalyzes the conversion of feruloyl-CoA to vanillin and acetyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (277 aa) | ||||
APV35387.1 | acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (466 aa) | ||||
accB | acetyl-CoA carboxylase, biotin carboxyl carrier protein; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (139 aa) | ||||
aroQ | Type II 3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (149 aa) | ||||
APV35393.1 | ROK family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (279 aa) | ||||
APV35403.1 | 3-oxoacyl-ACP reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa) | ||||
APV35411.1 | Ketopantoate reductase PanE/ApbA; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa) | ||||
APV35424.1 | Hydroxyacid dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (318 aa) | ||||
APV35426.1 | Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (302 aa) | ||||
APV35449.1 | hydroxymethylglutaryl-CoA lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (297 aa) | ||||
APV35469.1 | AMP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (549 aa) | ||||
APV35470.1 | acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (375 aa) | ||||
APV35471.1 | enoyl-CoA hydratase; Catalyzes the reversible hydration of unsaturated fatty acyl-CoA to beta-hydroxyacyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (257 aa) | ||||
gcvH | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (124 aa) | ||||
APV35491.1 | 3-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (351 aa) | ||||
APV35493.1 | S-(hydroxymethyl)glutathione dehydrogenase/class III alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily. (369 aa) | ||||
APV35501.1 | acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (414 aa) | ||||
fumC | Fumarate hydratase, class II; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (464 aa) | ||||
APV35537.1 | Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (345 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (395 aa) | ||||
APV35549.1 | Alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (386 aa) | ||||
APV35555.1 | 3-oxoacyl-ACP reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (463 aa) | ||||
APV35556.1 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (519 aa) | ||||
APV35559.1 | Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 1 subfamily. (329 aa) | ||||
ispF | 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; Involved in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), two major building blocks of isoprenoid compounds. Catalyzes the conversion of 4-diphosphocytidyl-2- C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP). (163 aa) | ||||
ispD | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D- erythritol from CTP and 2-C-methyl-D-erythritol 4-phosphate (MEP). (240 aa) | ||||
eno | Phosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (429 aa) | ||||
APV35592.1 | L-threonine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (390 aa) | ||||
APV35595.1 | Catalyzes the oxidation of acetaldehyde, benzaldehyde, propionaldehyde and other aldehydes; Derived by automated computational analysis using gene prediction method: Protein Homology. (503 aa) | ||||
aroC | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (363 aa) | ||||
APV35607.1 | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (660 aa) | ||||
metK | Methionine adenosyltransferase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (388 aa) | ||||
APV35633.1 | Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (466 aa) | ||||
APV35634.1 | Diaminohydroxyphosphoribosylaminopyrimidine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (510 aa) | ||||
APV35639.1 | Catalase HPII; Serves to protect cells from the toxic effects of hydrogen peroxide. (694 aa) | ||||
purT | Phosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (402 aa) | ||||
APV35695.1 | Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (476 aa) | ||||
APV35696.1 | L-asparaginase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the asparaginase 1 family. (355 aa) | ||||
cysE | Serine O-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (269 aa) | ||||
APV35725.1 | 3-oxoadipyl-CoA thiolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (401 aa) | ||||
APV35758.1 | acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (401 aa) | ||||
dxr | 1-deoxy-D-xylulose-5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP); Belongs to the DXR family. (398 aa) | ||||
APV35793.1 | Phosphatidate cytidylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDS family. (274 aa) | ||||
uppS | Di-trans,poly-cis-decaprenylcistransferase; Catalyzes the sequential condensation of isopentenyl diphosphate (IPP) with (2E,6E)-farnesyl diphosphate (E,E-FPP) to yield (2Z,6Z,10Z,14Z,18Z,22Z,26Z,30Z,34E,38E)-undecaprenyl diphosphate (di- trans,octa-cis-UPP). UPP is the precursor of glycosyl carrier lipid in the biosynthesis of bacterial cell wall polysaccharide components such as peptidoglycan and lipopolysaccharide. (249 aa) | ||||
argF | Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (306 aa) | ||||
argC | N-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (349 aa) | ||||
rpiA | Ribose 5-phosphate isomerase A; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (223 aa) | ||||
ilvA | PLP-dependent threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (512 aa) | ||||
APV35812.1 | Phospholipase; Hydrolysis of phosphatidylcholine with phospholipase A2 (EC 3.1.1.4) and phospholipase A1 (EC 3.1.1.32) activities. Belongs to the phospholipase A1 family. (396 aa) | ||||
APV35833.1 | Bifunctional glyoxylate/hydroxypyruvate reductase B; Catalyzes the formation of glycolate from glyoxylate and glycerate from hydroxypyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (322 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (512 aa) | ||||
gpsA | Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (357 aa) | ||||
ilvD | Dihydroxy-acid dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (609 aa) | ||||
hisZ | ATP phosphoribosyltransferase regulatory subunit; Required for the first step of histidine biosynthesis. May allow the feedback regulation of ATP phosphoribosyltransferase activity by histidine. (388 aa) | ||||
APV35873.1 | Erythrose-4-phosphate dehydrogenase; NAD-dependent; catalyzes the formation of 4-phosphoerythronate from erythrose 4-phosphate in the biosynthesis of pyridoxine 5'-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (341 aa) | ||||
APV35875.1 | Aspartate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (426 aa) | ||||
argD | Aspartate aminotransferase family protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (404 aa) | ||||
surE | 5'/3'-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (255 aa) | ||||
APV35903.1 | Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (462 aa) | ||||
hemL | Glutamate-1-semialdehyde-2,1-aminomutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (432 aa) | ||||
APV35944.1 | Isocitrate dehydrogenase (NADP(+)); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the monomeric-type IDH family. (744 aa) | ||||
APV35967.1 | Argininosuccinate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 2 subfamily. (447 aa) | ||||
APV35988.1 | FAD-dependent monooxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (410 aa) | ||||
APV35989.1 | Ubiquinone biosynthesis protein UbiH; Derived by automated computational analysis using gene prediction method: Protein Homology. (401 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (219 aa) | ||||
APV36020.1 | Isocitrate lyase; Catalyzes the first step in the glyoxalate cycle, which converts lipids to carbohydrates; Derived by automated computational analysis using gene prediction method: Protein Homology. (534 aa) | ||||
cysN | Sulfate adenylyltransferase subunit CysN; May be the GTPase, regulating ATP sulfurylase activity. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. CysN/NodQ subfamily. (537 aa) | ||||
cysD | Sulfate adenylyltransferase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (302 aa) | ||||
APV36047.1 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1228 aa) | ||||
APV36049.1 | Galactose mutarotase; Converts alpha-aldose to the beta-anomer. (382 aa) | ||||
mqo | Malate:quinone oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (543 aa) | ||||
APV36079.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (546 aa) | ||||
APV36116.1 | Phosphopantetheinyl transferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the P-Pant transferase superfamily. (282 aa) | ||||
APV36118.1 | Ornithine decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Orn/Lys/Arg decarboxylase class-II family. (386 aa) | ||||
APV36119.1 | Alcaligin biosynthesis protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (451 aa) | ||||
APV36120.1 | 2,3-dihydroxybenzoate-AMP ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (539 aa) | ||||
APV36124.1 | 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa) | ||||
APV36125.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (209 aa) | ||||
APV36126.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (390 aa) | ||||
APV36135.1 | Dihydrodipicolinate synthase family protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DapA family. (314 aa) | ||||
APV36139.1 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (502 aa) | ||||
hemB | Delta-aminolevulinic acid dehydratase; Catalyzes the formation of porphobilinogen from 5-aminolevulinate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ALAD family. (337 aa) | ||||
argB | Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (303 aa) | ||||
APV36165.1 | Phosphomannomutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (473 aa) | ||||
hemJ | TIGR00701 family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (150 aa) | ||||
APV36189.1 | Hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (225 aa) | ||||
acpP | Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis. (78 aa) | ||||
APV36193.1 | 3-oxoacyl-[acyl-carrier-protein] reductase; Catalyzes the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. Belongs to the short-chain dehydrogenases/reductases (SDR) family. (244 aa) | ||||
fabD | [acyl-carrier-protein] S-malonyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (328 aa) | ||||
APV36223.1 | Phosphoserine phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa) | ||||
APV36347.1 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (391 aa) | ||||
APV36353.1 | Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (228 aa) | ||||
hisC | Histidinol-phosphate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (363 aa) | ||||
hisD | Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (429 aa) | ||||
hisG | ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Short subfamily. (230 aa) | ||||
proC | Pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (278 aa) | ||||
accA | acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (274 aa) | ||||
panC | Pantoate--beta-alanine ligase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (281 aa) | ||||
panB | 3-methyl-2-oxobutanoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. (269 aa) | ||||
APV36438.1 | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (917 aa) | ||||
ilvC | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (338 aa) | ||||
APV36445.1 | Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (163 aa) | ||||
APV36446.1 | Acetolactate synthase, large subunit, biosynthetic type; Derived by automated computational analysis using gene prediction method: Protein Homology. (574 aa) | ||||
APV36459.1 | Enoyl-[acyl-carrier-protein] reductase; Catalyzes a key regulatory step in fatty acid biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (267 aa) | ||||
APV36482.1 | Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (459 aa) | ||||
pssA | CDP-diacylglycerol--serine O-phosphatidyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (277 aa) | ||||
mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family. (328 aa) | ||||
xpt | Xanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (191 aa) | ||||
APV36501.1 | NAD(P)H:quinone oxidoreductase, type IV; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the WrbA family. (198 aa) | ||||
APV36546.1 | Cystathionine beta-lyase; Catalyzes the formation of L-homocysteine from cystathionine; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa) | ||||
plsB | Glycerol-3-phosphate 1-O-acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPAT/DAPAT family. (855 aa) | ||||
APV36567.1 | Inositol monophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the inositol monophosphatase superfamily. (276 aa) | ||||
dxs | 1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (637 aa) | ||||
ribA | GTP cyclohydrolase II; Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate; Belongs to the GTP cyclohydrolase II family. (200 aa) | ||||
hemF | Coproporphyrinogen III oxidase; Involved in the heme biosynthesis. Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen- IX. (312 aa) | ||||
hemH | Ferrochelatase; Catalyzes the ferrous insertion into protoporphyrin IX. Belongs to the ferrochelatase family. (340 aa) | ||||
APV36592.1 | Glycerate dehydrogenase; Catalyzes the reduction of hydroxypyruvate to form D-glycerate, using NADH as an electron donor; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (320 aa) | ||||
APV36611.1 | D-3-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (410 aa) | ||||
ispH | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. Belongs to the IspH family. (316 aa) | ||||
APV36647.1 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (473 aa) | ||||
APV36648.1 | Glutamate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (1493 aa) | ||||
aroB | 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (362 aa) | ||||
aroK | Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (180 aa) | ||||
gltX | glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (502 aa) | ||||
APV36679.1 | propionyl-CoA--succinate CoA transferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (504 aa) | ||||
hisB | Imidazoleglycerol-phosphate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (197 aa) | ||||
hisH | Imidazole glycerol phosphate synthase subunit HisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (205 aa) | ||||
hisA | 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino]imidazole-4- carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (244 aa) | ||||
thrB | Homoserine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pseudomonas-type ThrB family. (316 aa) | ||||
hisF | Imidazole glycerol phosphate synthase subunit HisF; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (252 aa) | ||||
acsA | acetate--CoA ligase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (651 aa) | ||||
guaB | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa) | ||||
APV36750.1 | Pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (661 aa) | ||||
APV36751.1 | Pyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (904 aa) | ||||
ribA-2 | GTP cyclohydrolase II; Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate; Belongs to the GTP cyclohydrolase II family. (200 aa) | ||||
APV36766.1 | 5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the formation of tetrahydropteroyl-L-glutamate and methionine from L-homocysteine and 5-methyltetrahydropteroyltri-L-glutamate; Derived by automated computational analysis using gene prediction method: Protein Homology. (342 aa) | ||||
psd | Phosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). (283 aa) | ||||
BEN76_12605 | Hypothetical protein; Internal stop; Derived by automated computational analysis using gene prediction method: Protein Homology. (406 aa) | ||||
ribB-2 | 3,4-dihydroxy-2-butanone-4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family. (373 aa) | ||||
ribH | 6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin; Belongs to the DMRL synthase family. (156 aa) | ||||
dapA | 4-hydroxy-tetrahydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (298 aa) | ||||
purC | Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (239 aa) | ||||
APV36868.1 | Alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (340 aa) | ||||
dapB | 4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (273 aa) | ||||
ilvD-2 | Dihydroxy-acid dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (561 aa) | ||||
APV36896.1 | Bifunctional metallophosphatase/5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (644 aa) | ||||
hpt | Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (175 aa) | ||||
purE | 5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (171 aa) | ||||
purK | 5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (374 aa) | ||||
APV36932.1 | Lactonase; Derived by automated computational analysis using gene prediction method: Protein Homology. (406 aa) | ||||
APV36946.1 | Riboflavin biosynthesis protein RibF; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (333 aa) | ||||
argA | Amino-acid N-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily. (450 aa) | ||||
ubiG | Bifunctional 3-demethylubiquinol 3-O-methyltransferase/2-polyprenyl-6-hydroxyphenol methylase; O-methyltransferase that catalyzes the 2 O-methylation steps in the ubiquinone biosynthetic pathway; Belongs to the methyltransferase superfamily. UbiG/COQ3 family. (236 aa) | ||||
APV36983.1 | dTDP-glucose 4,6-dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD(P)-dependent epimerase/dehydratase family. dTDP-glucose dehydratase subfamily. (355 aa) | ||||
APV36984.1 | dTDP-4-dehydrorhamnose reductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose; Belongs to the dTDP-4-dehydrorhamnose reductase family. (302 aa) | ||||
APV36985.1 | Glucose-1-phosphate thymidylyltransferase; Catalyzes the formation of dTDP-glucose, from dTTP and glucose 1-phosphate, as well as its pyrophosphorolysis. Belongs to the glucose-1-phosphate thymidylyltransferase family. (299 aa) | ||||
APV36986.1 | dTDP-4-dehydrorhamnose 3,5-epimerase; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family. (189 aa) | ||||
APV37000.1 | UTP--glucose-1-phosphate uridylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (291 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (557 aa) | ||||
APV37005.1 | Phosphomannomutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (457 aa) | ||||
APV37013.1 | Catalyzes the formation of L-glutamate and an aromatic oxo acid from an aromatic amino acid and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (404 aa) | ||||
APV37585.1 | D-hexose-6-phosphate mutarotase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glucose-6-phosphate 1-epimerase family. (293 aa) | ||||
APV37590.1 | Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (362 aa) | ||||
APV37134.1 | Riboflavin synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (219 aa) | ||||
gpmI | Phosphoglycerate mutase (2,3-diphosphoglycerate-independent); Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (515 aa) | ||||
APV37144.1 | Threonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. (379 aa) | ||||
APV37145.1 | Homoserine dehydrogenase; Catalyzes the formation of L-aspartate 4-semialdehyde from L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (433 aa) | ||||
argH | Argininosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (477 aa) | ||||
hemC | Hydroxymethylbilane synthase; Tetrapolymerization of the monopyrrole PBG into the hydroxymethylbilane pre-uroporphyrinogen in several discrete steps. Belongs to the HMBS family. (307 aa) | ||||
APV37162.1 | uroporphyrinogen-III synthase; Catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrinogen III. (255 aa) | ||||
APV37170.1 | Phosphoglycolate phosphatase; Specifically catalyzes the dephosphorylation of 2- phosphoglycolate. Is involved in the dissimilation of the intracellular 2-phosphoglycolate formed during the DNA repair of 3'-phosphoglycolate ends, a major class of DNA lesions induced by oxidative stress. Belongs to the HAD-like hydrolase superfamily. CbbY/CbbZ/Gph/YieH family. (221 aa) | ||||
trpE | Anthranilate synthase component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentr [...] (497 aa) | ||||
fadA | 3-ketoacyl-CoA thiolase; Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. (390 aa) | ||||
fadB | Multifunctional fatty acid oxidation complex subunit alpha; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (717 aa) | ||||
ppnP | Hypothetical protein; Catalyzes the phosphorolysis of diverse nucleosides, yielding D-ribose 1-phosphate and the respective free bases. Can use uridine, adenosine, guanosine, cytidine, thymidine, inosine and xanthosine as substrates. Also catalyzes the reverse reactions. (108 aa) | ||||
tpiA | Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (265 aa) | ||||
hisI | Bifunctional phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family. (257 aa) | ||||
ubiE | Bifunctional demethylmenaquinone methyltransferase/2-methoxy-6-polyprenyl-1,4-benzoquinol methylase; Methyltransferase required for the conversion of demethylmenaquinol (DMKH2) to menaquinol (MKH2) and the conversion of 2-polyprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) to 2-polyprenyl-3- methyl-6-methoxy-1,4-benzoquinol (DMQH2). (314 aa) | ||||
aroE | Shikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (266 aa) | ||||
APV37269.1 | Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (387 aa) | ||||
APV37281.1 | HAD family hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (221 aa) | ||||
katG | Catalase/peroxidase HPI; Bifunctional enzyme with both catalase and broad-spectrum peroxidase activity; Belongs to the peroxidase family. Peroxidase/catalase subfamily. (726 aa) | ||||
leuC | 3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (472 aa) | ||||
leuD | 3-isopropylmalate dehydratase small subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (216 aa) | ||||
leuB | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (359 aa) | ||||
APV37302.1 | L-asparaginase 1; Derived by automated computational analysis using gene prediction method: Protein Homology. (326 aa) | ||||
asd | Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (372 aa) | ||||
metXS | Homoserine O-acetyltransferase; Transfers a succinyl group from succinyl-CoA to L-homoserine, forming succinyl-L-homoserine. (387 aa) | ||||
leuA | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily. (574 aa) | ||||
APV37353.1 | Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family. (508 aa) | ||||
APV37360.1 | Gluconokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (170 aa) | ||||
proA | Glutamate-5-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (421 aa) | ||||
ndk | Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (143 aa) | ||||
ispG | 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. Belongs to the IspG family. (371 aa) | ||||
BEN76_15765 | Hypothetical protein; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology. (86 aa) | ||||
APV37392.1 | 3-oxoacyl-ACP reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (241 aa) | ||||
ilvE | Branched chain amino acid aminotransferase; Acts on leucine, isoleucine and valine. Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (308 aa) | ||||
trpF | N-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. (213 aa) | ||||
trpB | Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (409 aa) | ||||
trpA | Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (267 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (298 aa) | ||||
argJ | Bifunctional ornithine acetyltransferase/N-acetylglutamate synthase; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis: the synthesis of N-acetylglutamate from glutamate and acetyl-CoA as the acetyl donor, and of ornithine by transacetylation between N(2)-acetylornithine and glutamate. Belongs to the ArgJ family. (406 aa) |