Your Input: | |||||
CDC19 | Pyruvate kinase; functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to pyruvate, the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration; regulated via allosteric activation by fructose bisphosphate; CDC19 has a paralog, PYK2, that arose from the whole genome duplication. (500 aa) | ||||
ACS1 | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family. (713 aa) | ||||
GDH3 | NADP(+)-dependent glutamate dehydrogenase; synthesizes glutamate from ammonia and alpha-ketoglutarate; rate of alpha-ketoglutarate utilization differs from Gdh1p; expression regulated by nitrogen and carbon sources; GDH3 has a paralog, GDH1, that arose from the whole genome duplication; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (457 aa) | ||||
PYC2 | Pyruvate carboxylase isoform; cytoplasmic enzyme that converts pyruvate to oxaloacetate; differentially regulated than isoform Pyc1p; mutations in the human homolog are associated with lactic acidosis; PYC2 has a paralog, PYC1, that arose from the whole genome duplication. (1180 aa) | ||||
PDB1 | E1 beta subunit of the pyruvate dehydrogenase (PDH) complex; PDH is an evolutionarily conserved multi-protein complex found in mitochondria. (366 aa) | ||||
CIT2 | Citrate synthase, peroxisomal isozyme involved in glyoxylate cycle; catalyzes condensation of acetyl coenzyme A and oxaloacetate to form citrate; expression is controlled by Rtg1p and Rtg2p transcription factors; SCF-Ucc1 regulates level of Cit2p to maintain citrate homeostasis; oxaloacetate-dependent positive feedback loop inhibits Cit2p ubiquitination; CIT2 has a paralog, CIT1, that arose from the whole genome duplication. (460 aa) | ||||
IDP1 | Mitochondrial NADP-specific isocitrate dehydrogenase; catalyzes the oxidation of isocitrate to alpha-ketoglutarate; not required for mitochondrial respiration and may function to divert alpha-ketoglutarate to biosynthetic processes. (428 aa) | ||||
MDH3 | Peroxisomal malate dehydrogenase; catalyzes interconversion of malate and oxaloacetate; involved in the glyoxylate cycle. (343 aa) | ||||
GLT1 | NAD(+)-dependent glutamate synthase (GOGAT); synthesizes glutamate from glutamine and alpha-ketoglutarate; with Gln1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source; assembles into filaments as cells approach stationary phase and under cytosolic acidification and starvation conditions. (2145 aa) | ||||
GDH2 | NAD(+)-dependent glutamate dehydrogenase; degrades glutamate to ammonia and alpha-ketoglutarate; expression sensitive to nitrogen catabolite repression and intracellular ammonia levels; genetically interacts with GDH3 by suppressing stress-induced apoptosis. (1092 aa) | ||||
KGD2 | 2-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase); Dihydrolipoyl transsuccinylase; component of the mitochondrial alpha-ketoglutarate dehydrogenase complex, which catalyzes the oxidative decarboxylation of alpha-ketoglutarate to succinyl-CoA in the TCA cycle; phosphorylated. (463 aa) | ||||
ARH1 | Probable NADPH:adrenodoxin oxidoreductase, mitochondrial; Oxidoreductase of the mitochondrial inner membrane; involved in cytoplasmic and mitochondrial iron homeostasis and required for activity of Fe-S cluster-containing enzymes; one of the few mitochondrial proteins essential for viability; Belongs to the ferredoxin--NADP reductase type 1 family. (493 aa) | ||||
ICL1 | Isocitrate lyase; catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle; expression of ICL1 is induced by growth on ethanol and repressed by growth on glucose. (557 aa) | ||||
PDA1 | E1 alpha subunit of the pyruvate dehydrogenase (PDH) complex; catalyzes the direct oxidative decarboxylation of pyruvate to acetyl-CoA; phosphorylated; regulated by glucose; PDH complex is concentrated in spots within the mitochondrial matrix, often near the ERMES complex and near peroxisomes. (420 aa) | ||||
LPD1 | Dihydrolipoyl dehydrogenase, mitochondrial; Dihydrolipoamide dehydrogenase; the lipoamide dehydrogenase component (E3) of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multi-enzyme complexes; PDH complex is concentrated in spots within the mitochondrial matrix, often near the ERMES complex and near peroxisomes; LPD1 has a paralog, IRC15, that arose from the whole genome duplication; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (499 aa) | ||||
PYC1 | Pyruvate carboxylase isoform; cytoplasmic enzyme that converts pyruvate to oxaloacetate; differentially regulated than isoform Pyc2p; mutations in the human homolog are associated with lactic acidosis; PYC1 has a paralog, PYC2, that arose from the whole genome duplication. (1178 aa) | ||||
PDX1 | E3-binding protein of the mitochondrial pyruvate dehydrogenase complex; plays a structural role in the complex by binding and positioning dihydrolipoamide dehydrogenase (E3) to the dihydrolipoamide acetyltransferase (E2) core. (410 aa) | ||||
LSC2 | Beta subunit of succinyl-CoA ligase; succinyl-CoA ligase is a mitochondrial enzyme of the TCA cycle that catalyzes the nucleotide-dependent conversion of succinyl-CoA to succinate. (427 aa) | ||||
KGD1 | 2-oxoglutarate dehydrogenase, mitochondrial; Subunit of the mitochondrial alpha-ketoglutarate dehydrogenase complex; catalyzes a key step in the tricarboxylic acid (TCA) cycle, the oxidative decarboxylation of alpha-ketoglutarate to form succinyl-CoA. (1014 aa) | ||||
DAL7 | Malate synthase; can accept butyryl-CoA as acyl-CoA donor in addition to traditional substrate acetyl-CoA; recycles glyoxylate generated during allantoin degradation; SWAT-GFP and mCherry fusion proteins localize to the cytosol; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation. (554 aa) | ||||
MAE1 | Mitochondrial malic enzyme; catalyzes the oxidative decarboxylation of malate to pyruvate, which is a key intermediate in sugar metabolism and a precursor for synthesis of several amino acids. (669 aa) | ||||
MDH1 | Mitochondrial malate dehydrogenase; catalyzes interconversion of malate and oxaloacetate; involved in the tricarboxylic acid (TCA) cycle; phosphorylated; Belongs to the LDH/MDH superfamily. MDH type 1 family. (334 aa) | ||||
AAT1 | Mitochondrial aspartate aminotransferase; catalyzes the conversion of oxaloacetate to aspartate in aspartate and asparagine biosynthesis. (451 aa) | ||||
PCK1 | Phosphoenolpyruvate carboxykinase; key enzyme in gluconeogenesis, catalyzes early reaction in carbohydrate biosynthesis, glucose represses transcription and accelerates mRNA degradation, regulated by Mcm1p and Cat8p, located in the cytosol. (549 aa) | ||||
AAT2 | Aspartate aminotransferase, cytoplasmic; Cytosolic aspartate aminotransferase involved in nitrogen metabolism; localizes to peroxisomes in oleate-grown cells; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (418 aa) | ||||
IDP2 | Cytosolic NADP-specific isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose; IDP2 has a paralog, IDP3, that arose from the whole genome duplication. (412 aa) | ||||
ACO1 | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. (778 aa) | ||||
NIT3 | Omega-amidase NIT3; Nit protein; one of two proteins in S. cerevisiae with similarity to the Nit domain of NitFhit from fly and worm and to the mouse and human Nit protein which interacts with the Fhit tumor suppressor; nitrilase superfamily member. (291 aa) | ||||
FBP1 | Fructose-1,6-bisphosphatase; key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated degradation depending on growth conditions; glucose starvation results in redistribution to the periplasm; interacts with Vid30p; Belongs to the FBPase class 1 family. (348 aa) | ||||
IDP3 | Peroxisomal NADP-dependent isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate with the formation of NADP(H+), required for growth on unsaturated fatty acids; IDP3 has a paralog, IDP2, that arose from the whole genome duplication. (420 aa) | ||||
IDH1 | Subunit of mitochondrial NAD(+)-dependent isocitrate dehydrogenase; complex catalyzes the oxidation of isocitrate to alpha-ketoglutarate in the TCA cycle; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (360 aa) | ||||
LAT1 | Dihydrolipoamide acetyltransferase component (E2) of the PDC; the pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. (482 aa) | ||||
MLS1 | Malate synthase, enzyme of the glyoxylate cycle; involved in utilization of non-fermentable carbon sources; expression is subject to carbon catabolite repression; localizes in peroxisomes during growth on oleic acid, otherwise cytosolic; can accept butyryl-CoA as acyl-CoA donor in addition to traditional substrate acetyl-CoA. (554 aa) | ||||
CIT1 | Citrate synthase, mitochondrial; Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication. (479 aa) | ||||
MDH2 | Cytoplasmic malate dehydrogenase; one of three isozymes that catalyze interconversion of malate and oxaloacetate; involved in the glyoxylate cycle and gluconeogenesis during growth on two-carbon compounds; interacts with Pck1p and Fbp1. (377 aa) | ||||
IDH2 | Subunit of mitochondrial NAD(+)-dependent isocitrate dehydrogenase; complex catalyzes the oxidation of isocitrate to alpha-ketoglutarate in the TCA cycle; phosphorylated; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (369 aa) | ||||
LSC1 | Alpha subunit of succinyl-CoA ligase; succinyl-CoA ligase is a mitochondrial enzyme of the TCA cycle that catalyzes the nucleotide-dependent conversion of succinyl-CoA to succinate; phosphorylated. (329 aa) | ||||
PYK2 | Pyruvate kinase; appears to be modulated by phosphorylation; transcription repressed by glucose, and Pyk2p may be active under low glycolytic flux; PYK2 has a paralog, CDC19, that arose from the whole genome duplication. (506 aa) | ||||
GDH1 | NADP(+)-dependent glutamate dehydrogenase; synthesizes glutamate from ammonia and alpha-ketoglutarate; rate of alpha-ketoglutarate utilization differs from Gdh3p; expression regulated by nitrogen and carbon sources; GDH1 has a paralog, GDH3, that arose from the whole genome duplication. (454 aa) | ||||
IRC15 | Increased recombination centers protein 15; Microtubule associated protein; regulates microtubule dynamics; required for accurate meiotic chromosome segregation; null mutant displays large budded cells due to delayed mitotic progression, increased levels of spontaneous Rad52 foci; IRC15 has a paralog, LPD1, that arose from the whole genome duplication; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (499 aa) | ||||
CIT3 | Dual specificity mitochondrial citrate and methylcitrate synthase; catalyzes the condensation of acetyl-CoA and oxaloacetate to form citrate and that of propionyl-CoA and oxaloacetate to form 2-methylcitrate. (486 aa) | ||||
ICL2 | 2-methylisocitrate lyase of the mitochondrial matrix; functions in the methylcitrate cycle to catalyze the conversion of 2-methylisocitrate to succinate and pyruvate; ICL2 transcription is repressed by glucose and induced by ethanol. (575 aa) | ||||
GLN1 | Glutamine synthetase (GS); synthesizes glutamine from glutamate and ammonia; with Glt1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source and by amino acid limitation; forms filaments of back-to-back stacks of cylindrical homo-decamers at low pH, leading to enzymatic inactivation and storage during states of advanced cellular starvation; relocalizes from nucleus to cytoplasmic foci upon DNA replication stress. (370 aa) |