STRINGSTRING
CLN3 CLN3 CKS1 CKS1 CDC28 CDC28 HCM1 HCM1 MBP1 MBP1 CLB3 CLB3 PDS1 PDS1 SWI5 SWI5 YHP1 YHP1 SWI4 SWI4 BCK2 BCK2 CAK1 CAK1 CDH1 CDH1 CDC20 CDC20 CLB1 CLB1 CLB6 CLB6 FKH1 FKH1 SWE1 SWE1 SWI6 SWI6 CLB4 CLB4 YOX1 YOX1 MIH1 MIH1 MCM1 MCM1 CLN1 CLN1 FKH2 FKH2 STB1 STB1 NRM1 NRM1 WHI5 WHI5 NDD1 NDD1 CLN2 CLN2 ACM1 ACM1 CLB2 CLB2 CLB5 CLB5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CLN3G1/S-specific cyclin CLN3; G1 cyclin involved in cell cycle progression; activates Cdc28p kinase to promote G1 to S phase transition; plays a role in regulating transcription of other G1 cyclins, CLN1 and CLN2; regulated by phosphorylation and proteolysis; acetyl-CoA induces CLN3 transcription in response to nutrient repletion to promote cell-cycle entry; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (580 aa)
CKS1Cyclin-dependent protein kinase regulatory subunit and adaptor; interacts with Cdc28p (aka Cdk1p); required for G1/S and G2/M phase transitions and budding; mediates phosphorylation and degradation of Sic1p; modulates proteolysis of M-phase targets through interactions with the proteasome; role in transcriptional regulation, recruiting proteasomal subunits to target gene promoters; human homologs CKS1B and CKS2 can each complement yeast cks1 null mutant. (150 aa)
CDC28Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant. (298 aa)
HCM1Forkhead transcription factor; drives S-phase activation of genes involved in chromosome segregation, spindle dynamics, budding; also activates genes involved in respiration, use of alternative energy sources (like proline), NAD synthesis, oxidative stress resistance; key factor in early adaptation to nutrient deficiency and diauxic shift; suppressor of calmodulin mutants with specific SPB assembly defects; ortholog of C. elegans lifespan regulator PHA-4. (564 aa)
MBP1Transcription factor; involved in regulation of cell cycle progression from G1 to S phase, forms a complex with Swi6p that binds to MluI cell cycle box regulatory element in promoters of DNA synthesis genes. (833 aa)
CLB3G2/mitotic-specific cyclin-3; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; relative distribution to the nucleus increases upon DNA replication stress; CLB3 has a paralog, CLB4, that arose from the whole genome duplication. (427 aa)
PDS1Securin; inhibits anaphase by binding separin Esp1p; blocks cyclin destruction and mitotic exit, essential for meiotic progression and mitotic cell cycle arrest; localization is cell-cycle dependent and regulated by Cdc28p phosphorylation. (373 aa)
SWI5Transcriptional factor SWI5; Transcription factor that recruits Mediator and Swi/Snf complexes; activates transcription of genes expressed at the M/G1 phase boundary and in G1 phase; required for expression of the HO gene controlling mating type switching; localization to nucleus occurs during G1 and appears to be regulated by phosphorylation by Cdc28p kinase; SWI5 has a paralog, ACE2, that arose from the whole genome duplication. (709 aa)
YHP1Homeobox protein YHP1; Homeobox transcriptional repressor; binds Mcm1p and early cell cycle box (ECB) elements of cell cycle regulated genes, thereby restricting ECB-mediated transcription to the M/G1 interval; YHP1 has a paralog, YOX1, that arose from the whole genome duplication. (353 aa)
SWI4Regulatory protein SWI4; DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair; Slt2p-independent regulator of cold growth; acetylation at two sites, K1016 and K1066, regulates interaction with Swi6p. (1093 aa)
BCK2Protein BCK2; Serine/threonine-rich protein involved in PKC1 signaling pathway; protein kinase C (PKC1) signaling pathway controls cell integrity; overproduction suppresses pkc1 mutations. (851 aa)
CAK1Serine/threonine-protein kinase CAK1; Cyclin-dependent kinase-activating kinase; required for passage through the cell cycle; phosphorylates and activates Cdc28p; nucleotide-binding pocket differs significantly from those of most other protein kinases. (368 aa)
CDH1Activator of anaphase-promoting complex/cyclosome (APC/C); antagonist of the spindle assembly checkpoint; directs ubiquitination of cyclins resulting in mitotic exit; targets the APC/C to specific substrates including: Cdc20p, Ase1p, Cin8p, Fin1p and Clb5p; partially active in metaphase, and fully active in anaphase; cell-cycle regulated; Belongs to the WD repeat CDC20/Fizzy family. (566 aa)
CDC20Activator of anaphase-promoting complex/cyclosome (APC/C); APC/C is required for metaphase/anaphase transition; directs ubiquitination of mitotic cyclins, Pds1p, and other anaphase inhibitors; cell-cycle regulated; potential Cdc28p substrate; relative distribution to the nucleus increases upon DNA replication stress; Belongs to the WD repeat CDC20/Fizzy family. (610 aa)
CLB1G2/mitotic-specific cyclin-1; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB1 has a paralog, CLB2, that arose from the whole genome duplication. (471 aa)
CLB6S-phase entry cyclin-6; B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1; CLB6 has a paralog, CLB5, that arose from the whole genome duplication. (380 aa)
FKH1Fork head protein homolog 1; Forkhead family transcription factor; rate-limiting replication origin activator; evolutionarily conserved lifespan regulator; binds multiple chromosomal elements with distinct specificities, cell cycle dynamics; regulates transcription elongation, chromatin silencing at mating loci, expression of G2/M phase genes; facilitates clustering, activation of early-firing replication origins; binds HML recombination enhancer, regulates donor preference during mating-type switching. (484 aa)
SWE1Mitosis inhibitor protein kinase SWE1; Protein kinase that regulates the G2/M transition; negative regulator of the Cdc28p kinase; morphogenesis checkpoint kinase; positive regulator of sphingolipid biosynthesis via Orm2p; phosphorylates a tyrosine residue in the N-terminus of Hsp90 in a cell-cycle associated manner, thus modulating the ability of Hsp90 to chaperone a selected clientele; localizes to the nucleus and to the daughter side of the mother-bud neck; homolog of S. pombe Wee1p; potential Cdc28p substrate. (819 aa)
SWI6Regulatory protein SWI6; Transcription cofactor; forms complexes with Swi4p and Mbp1p to regulate transcription at the G1/S transition; involved in meiotic gene expression; also binds Stb1p to regulate transcription at START; cell wall stress induces phosphorylation by Mpk1p, which regulates Swi6p localization; required for the unfolded protein response, independently of its known transcriptional coactivators. (803 aa)
CLB4G2/mitotic-specific cyclin-4; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; CLB4 has a paralog, CLB3, that arose from the whole genome duplication. (460 aa)
YOX1Homeobox protein YOX1; Homeobox transcriptional repressor; binds to Mcm1p and to early cell cycle boxes (ECBs) in the promoters of cell cycle-regulated genes expressed in M/G1 phase; expression is cell cycle-regulated; phosphorylated by Cdc28p; relocalizes from nucleus to cytoplasm upon DNA replication stress; YOX1 has a paralog, YHP1, that arose from the whole genome duplication. (385 aa)
MIH1M-phase inducer phosphatase; Protein tyrosine phosphatase involved in cell cycle control; regulates the phosphorylation state of Cdc28p; homolog of S. pombe cdc25; Belongs to the MPI phosphatase family. (554 aa)
MCM1Transcription factor; involved in cell-type-specific transcription and pheromone response; plays a central role in the formation of both repressor and activator complexes; relocalizes to the cytosol in response to hypoxia. (286 aa)
CLN1G1/S-specific cyclin CLN1; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN1 has a paralog, CLN2, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (546 aa)
FKH2Fork head protein homolog 2; Forkhead family transcription factor; rate-limiting activator of replication origins; evolutionarily conserved regulator of lifespan; binds multiple chromosomal elements with distinct specificities, cell cycle dynamics; positively regulates transcriptional elongation; facilitates clustering, activation of early-firing replication origins; negative role in chromatin silencing at HML and HMR; major role in expression of G2/M phase genes; relocalizes to cytosol under hypoxia. (862 aa)
STB1Protein with role in regulation of MBF-specific transcription at Start; phosphorylated by Cln-Cdc28p kinases in vitro; unphosphorylated form binds Swi6p, which is required for Stb1p function; expression is cell-cycle regulated; STB1 has a paralog, YOL131W, that arose from the whole genome duplication. (420 aa)
NRM1Transcription factor NRM1; Transcriptional co-repressor of MBF-regulated gene expression; Nrm1p associates stably with promoters via MCB binding factor (MBF) to repress transcription upon exit from G1 phase. (249 aa)
WHI5G1-specific transcriptional repressor WHI5; Repressor of G1 transcription; binds to SCB binding factor (SBF) at SCB target promoters in early G1; dilution of Whi5p concentration during cell growth determines cell size; phosphorylation of Whi5p by the CDK, Cln3p/Cdc28p relieves repression and promoter binding by Whi5, and contributes to both the determination of critical cell size at START and cell fate; periodically expressed in G1; Belongs to the WHI5/NRM1 family. (295 aa)
NDD1Nuclear division defective protein 1; Transcriptional activator essential for nuclear division; localized to the nucleus; essential component of the mechanism that activates the expression of a set of late-S-phase-specific genes; turnover is tightly regulated during cell cycle and in response to DNA damage. (554 aa)
CLN2G1/S-specific cyclin CLN2; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN2 has a paralog, CLN1, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (545 aa)
ACM1APC/C-CDH1 modulator 1; Pseudosubstrate inhibitor of the APC/C; suppresses APC/C [Cdh1]-mediated proteolysis of mitotic cyclins; associates with Cdh1p, Bmh1p and Bmh2p; cell cycle regulated protein; the anaphase-promoting complex/cyclosome is also known as APC/C. (209 aa)
CLB2G2/mitotic-specific cyclin-2; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB2 has a paralog, CLB1, that arose from the whole genome duplication. (491 aa)
CLB5S-phase entry cyclin-5; B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1 phase; CLB5 has a paralog, CLB6, that arose from the whole genome duplication. (435 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (38%) [HD]