Your Input: | |||||
SKO1 | CRE-binding bZIP protein SKO1; Basic leucine zipper transcription factor of the ATF/CREB family; forms a complex with Tup1p and Cyc8p to both activate and repress transcription; cytosolic and nuclear protein involved in osmotic and oxidative stress responses. (647 aa) | ||||
OAF1 | Oleate-activated transcription factor; subunit of a heterodimeric complex with Pip2p, which binds to oleate-response elements (ORE) in the promoter of genes involved in beta-oxidation of fatty acids, peroxisome organization and biogenesis, activating transcription in the presence of oleate; regulates chromatin silencing at telomeres; involved in diauxic shift; OAF1 has a paralog, PIP2, that arose from the whole genome duplication. (1047 aa) | ||||
PDR3 | Transcription factor PDR3; Transcriptional activator of the pleiotropic drug resistance network; regulates expression of ATP-binding cassette (ABC) transporters through binding to cis-acting PDRE sites (PDR responsive elements); has a role in response to drugs and organic solvents; post-translationally up-regulated in cells lacking functional mitochondrial genome; involved in diauxic shift; relative distribution to nucleus increases upon DNA replication stress; APCC(Cdh1) substrate. (976 aa) | ||||
HAP3 | Transcriptional activator HAP3; Subunit of the Hap2p/3p/4p/5p CCAAT-binding complex; complex is heme-activated and glucose-repressed; complex is a transcriptional activator and global regulator of respiratory gene expression; contains sequences contributing to both complex assembly and DNA binding. (144 aa) | ||||
TEC1 | Transcription factor targeting filamentation genes and Ty1 expression; Ste12p activation of most filamentation gene promoters depends on Tec1p and Tec1p transcriptional activity is dependent on its association with Ste12p; binds to TCS elements upstream of filamentation genes, which are regulated by Tec1p/Ste12p/Dig1p complex; competes with Dig2p for binding to Ste12p/Dig1p; positive regulator of chronological life span; TEA/ATTS DNA-binding domain family member; Belongs to the TEC1 family. (486 aa) | ||||
RPN4 | Protein RPN4; Transcription factor that stimulates expression of proteasome genes; Rpn4p levels are in turn regulated by the 26S proteasome in a negative feedback control mechanism; RPN4 is transcriptionally regulated by various stress responses; relative distribution to the nucleus increases upon DNA replication stress. (531 aa) | ||||
MBP1 | Transcription factor; involved in regulation of cell cycle progression from G1 to S phase, forms a complex with Swi6p that binds to MluI cell cycle box regulatory element in promoters of DNA synthesis genes. (833 aa) | ||||
PHO2 | Regulatory protein PHO2; Homeobox transcription factor; regulatory targets include genes involved in phosphate metabolism; binds cooperatively with Pho4p to the PHO5 promoter; phosphorylation of Pho2p facilitates interaction with Pho4p; relocalizes to the cytosol in response to hypoxia. (559 aa) | ||||
UGA3 | Transcriptional activator for GABA-dependent induction of GABA genes; binds to DNA elements found in the promoters of target genes and increases their expression in the presence of GABA (gamma-aminobutyrate); zinc finger transcription factor of the Zn(2)-Cys(6) binuclear cluster domain type; localized to the nucleus; examples of GABA genes include UGA1, UGA2, and UGA4. (528 aa) | ||||
GIS1 | Transcriptional activator/repressor GIS1; Histone demethylase and transcription factor; regulates genes during nutrient limitation; activity modulated by proteasome-mediated proteolysis; has JmjC and JmjN domain in N-terminus that interact, promoting stability and proper transcriptional activity; contains two transactivating domains downstream of Jmj domains and a C-terminal DNA binding domain; relocalizes to the cytosol in response to hypoxia; GIS1 has a paralog, RPH1, that arose from the whole genome duplication. (894 aa) | ||||
STB3 | Protein STB3; Ribosomal RNA processing element (RRPE)-binding protein; involved in the glucose-induced transition from quiescence to growth; restricted to nucleus in quiescent cells, released into cytoplasm after glucose repletion; binds Sin3p; relative distribution to the nucleus increases upon DNA replication stress. (513 aa) | ||||
UPC2 | Sterol uptake control protein 2; Sterol regulatory element binding protein; induces sterol biosynthetic genes, upon sterol depletion; acts as a sterol sensor, binding ergosterol in sterol rich conditions; relocates from intracellular membranes to perinuclear foci upon sterol depletion; redundant activator of filamentation with ECM22, up-regulating the expression of filamentous growth genes; contains a Zn[2]-Cys[6] binuclear cluster; UPC2 has a paralog, ECM22, that arose from the whole genome duplication. (913 aa) | ||||
ADR1 | Regulatory protein ADR1; Carbon source-responsive zinc-finger transcription factor; required for transcription of the glucose-repressed gene ADH2, of peroxisomal protein genes, and of genes required for ethanol, glycerol, and fatty acid utilization. (1323 aa) | ||||
CAD1 | AP-1-like basic leucine zipper (bZIP) transcriptional activator; involved in stress responses, iron metabolism, and pleiotropic drug resistance; controls a set of genes involved in stabilizing proteins; binds consensus sequence TTACTAA; CAD1 has a paralog, YAP1, that arose from the whole genome duplication. (409 aa) | ||||
STP1 | Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus; undergoes proteolytic processing by SPS (Ssy1p-Ptr3p-Ssy5p)-sensor component Ssy5p in response to extracellular amino acids; activates transcription of amino acid permease genes and may have a role in tRNA processing; STP1 has a paralog, STP2, that arose from the whole genome duplication. (519 aa) | ||||
GCN4 | General control protein GCN4; bZIP transcriptional activator of amino acid biosynthetic genes; activator responds to amino acid starvation; expression is tightly regulated at both the transcriptional and translational levels; Belongs to the bZIP family. GCN4 subfamily. (281 aa) | ||||
ACA1 | ATF/CREB activator 1; ATF/CREB family basic leucine zipper (bZIP) transcription factor; binds as a homodimer to the ATF/CREB consensus sequence TGACGTCA; important for carbon source utilization; target genes include GRE2 and COS8; ACA1 has a paralog, CST6, that arose from the whole genome duplication. (489 aa) | ||||
SWI4 | Regulatory protein SWI4; DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair; Slt2p-independent regulator of cold growth; acetylation at two sites, K1016 and K1066, regulates interaction with Swi6p. (1093 aa) | ||||
GAT1 | Transcriptional regulatory protein GAT1; Transcriptional activator of nitrogen catabolite repression genes; contains a GATA-1-type zinc finger DNA-binding motif; activity and localization regulated by nitrogen limitation and Ure2p; different translational starts produce two major and two minor isoforms that are differentially regulated and localized. (510 aa) | ||||
ZNF1 | Zinc cluster transcription factor that regulates respiratory growth; binds to promoters of genes involved in respiration, gluconeogenesis, and the glyoxylate shunt; required for normal carbon source utilization and stress response; Belongs to the MAL13 family. (465 aa) | ||||
PDR1 | Transcription factor that regulates the pleiotropic drug response; zinc cluster protein that is a master regulator involved in recruiting other zinc cluster proteins to pleiotropic drug response elements (PDREs) to fine tune the regulation of multidrug resistance genes; relocalizes to the cytosol in response to hypoxia; PDR1 has a paralog, PDR3, that arose from the whole genome duplication. (1068 aa) | ||||
FZF1 | Zinc finger protein FZF1; Transcription factor involved in sulfite metabolism; sole identified regulatory target is SSU1; overexpression suppresses sulfite-sensitivity of many unrelated mutants due to hyperactivation of SSU1, contains five zinc fingers; protein abundance increases in response to DNA replication stress. (299 aa) | ||||
YAP3 | Basic leucine zipper (bZIP) transcription factor. (330 aa) | ||||
STP2 | Transcription factor; activated by proteolytic processing in response to signals from the SPS sensor system for external amino acids; activates transcription of amino acid permease genes; STP2 has a paralog, STP1, that arose from the whole genome duplication. (541 aa) | ||||
SKN7 | Transcription factor SKN7; Nuclear response regulator and transcription factor; physically interacts with the Tup1-Cyc8 complex and recruits Tup1p to its targets; part of a branched two-component signaling system; required for optimal induction of heat-shock genes in response to oxidative stress; involved in osmoregulation; relocalizes to the cytosol in response to hypoxia; SKN7 has a paralog, HMS2, that arose from the whole genome duplication. (622 aa) | ||||
CST6 | ATF/CREB activator 2; Basic leucine zipper (bZIP) transcription factor from ATF/CREB family involved in stress-responsive regulatory network; mediates transcriptional activation of NCE103 in response to low CO2 levels; proposed to be a regulator of oleate responsive genes; involved in utilization of non-optimal carbon sources and chromosome stability; relocalizes to the cytosol in response to hypoxia; CST6 has a paralog, ACA1, that arose from the whole genome duplication. (587 aa) | ||||
FKH1 | Fork head protein homolog 1; Forkhead family transcription factor; rate-limiting replication origin activator; evolutionarily conserved lifespan regulator; binds multiple chromosomal elements with distinct specificities, cell cycle dynamics; regulates transcription elongation, chromatin silencing at mating loci, expression of G2/M phase genes; facilitates clustering, activation of early-firing replication origins; binds HML recombination enhancer, regulates donor preference during mating-type switching. (484 aa) | ||||
MET28 | bZIP transcriptional activator in the Cbf1p-Met4p-Met28p complex; participates in the regulation of sulfur metabolism. (187 aa) | ||||
SIP4 | Protein SIP4; C6 zinc cluster transcriptional activator; binds to the carbon source-responsive element (CSRE) of gluconeogenic genes; involved in the positive regulation of gluconeogenesis; regulated by Snf1p protein kinase; localized to the nucleus. (829 aa) | ||||
CBF1 | Centromere-binding protein 1; Basic helix-loop-helix (bHLH) protein; forms homodimer to bind E-box consensus sequence CACGTG present at MET gene promoters and centromere DNA element I (CDEI); affects nucleosome positioning at this motif; associates with other transcription factors such as Met4p and Isw1p to mediate transcriptional activation or repression; associates with kinetochore proteins, required for chromosome segregation; protein abundance increases in response to DNA replication stress. (351 aa) | ||||
PUT3 | Proline utilization trans-activator; Transcriptional activator; binds specific gene recruitment sequences and is required for DNA zip code-mediated targeting of genes to nuclear periphery; regulates proline utilization genes, constitutively binds PUT1 and PUT2 promoters as a dimer, undergoes conformational change to form active state; binds other promoters only under activating conditions; differentially phosphorylated in presence of different nitrogen sources; has a Zn(2)-Cys(6) binuclear cluster domain. (979 aa) | ||||
RGT1 | Glucose-responsive transcription factor; regulates expression of several glucose transporter (HXT) genes in response to glucose; binds to promoters and acts both as a transcriptional activator and repressor; recruits Tup1p/Cyc8p to target gene promoters; RGT1 has a paralog, EDS1, that arose from the whole genome duplication; Belongs to the EDS1/RGT1 family. (1170 aa) | ||||
ABF1 | ARS-binding factor 1; DNA binding protein with possible chromatin-reorganizing activity; involved in transcriptional activation, gene silencing, and DNA replication and repair; Belongs to the BAF1 family. (731 aa) | ||||
ECM22 | Sterol regulatory element binding protein; regulates transcription of sterol biosynthetic genes upon sterol depletion, after relocating from intracellular membranes to perinuclear foci; redundant activator of filamentation with UPC2, up-regulating the expression of genes involved in filamentous growth; contains Zn[2]-Cys[6] binuclear cluster; ECM22 has a paralog, UPC2, that arose from the whole genome duplication. (814 aa) | ||||
HAP1 | Zinc finger transcription factor; involved in the complex regulation of gene expression in response to levels of heme and oxygen; localizes to the mitochondrion as well as to the nucleus; the S288C sequence differs from other strain backgrounds due to a Ty1 insertion in the carboxy terminus. (1502 aa) | ||||
LEU3 | Regulatory protein LEU3; Zinc-knuckle transcription factor, repressor and activator; regulates genes involved in branched chain amino acid biosynthesis and ammonia assimilation; acts as a repressor in leucine-replete conditions and as an activator in the presence of alpha-isopropylmalate, an intermediate in leucine biosynthesis that accumulates during leucine starvation. (886 aa) | ||||
YAP1 | Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; activated by H2O2 through the multistep formation of disulfide bonds and transit from the cytoplasm to the nucleus; Yap1p is degraded in the nucleus after the oxidative stress has passed; mediates resistance to cadmium; relative distribution to the nucleus increases upon DNA replication stress; YAP1 has a paralog, CAD1, that arose from the whole genome duplication. (650 aa) | ||||
MAC1 | Metal-binding activator 1; Copper-sensing transcription factor; involved in regulation of genes required for high affinity copper transport; required for regulation of yeast copper genes in response to DNA-damaging agents; undergoes changes in redox state in response to changing levels of copper or MMS. (417 aa) | ||||
MCM1 | Transcription factor; involved in cell-type-specific transcription and pheromone response; plays a central role in the formation of both repressor and activator complexes; relocalizes to the cytosol in response to hypoxia. (286 aa) | ||||
CAT8 | Regulatory protein CAT8; Zinc cluster transcriptional activator; necessary for derepression of a variety of genes under non-fermentative growth conditions, active after diauxic shift, binds carbon source responsive elements; relative distribution to the nucleus increases upon DNA replication stress. (1433 aa) | ||||
CRZ1 | Transcriptional regulator CRZ1; Transcription factor, activates transcription of stress response genes; nuclear localization is positively regulated by calcineurin-mediated dephosphorylation; rapidly localizes to the nucleus under blue light stress; can be activated in stochastic pulses of nuclear localization in response to calcium. (678 aa) | ||||
MET4 | Leucine-zipper transcriptional activator; responsible for regulation of sulfur amino acid pathway; requires different combinations of auxiliary factors Cbf1p, Met28p, Met31p and Met32p; feedforward loop exists in the regulation of genes controlled by Met4p and Met32p; can be ubiquitinated by ubiquitin ligase SCF-Met30p, is either degraded or maintained in an inactive state; regulates degradation of its own DNA-binding cofactors by targeting them to SCF-Met30p; Belongs to the bZIP family. (672 aa) | ||||
FPR1 | FK506-binding protein 1; Peptidyl-prolyl cis-trans isomerase (PPIase); binds to the drugs FK506 and rapamycin; also binds to the nonhistone chromatin binding protein Hmo1p and may regulate its assembly or function; N-terminally propionylated in vivo; mutation is functionally complemented by human FKBP1A. (114 aa) | ||||
AZF1 | Asparagine-rich zinc finger protein AZF1; Zinc-finger transcription factor; involved in diauxic shift; in the presence of glucose, activates transcription of genes involved in growth and carbon metabolism; in nonfermentable carbon sources, activates transcription of genes involved in maintenance of cell wall integrity; relocalizes to the cytosol in response to hypoxia. (914 aa) | ||||
HAP5 | Transcriptional activator HAP5; Subunit of the Hap2p/3p/4p/5p CCAAT-binding complex; complex is heme-activated and glucose repressed; complex is a transcriptional activator and global regulator of respiratory gene expression; required for assembly and DNA binding activity of the complex. (242 aa) | ||||
PIP2 | Peroxisome proliferation transcriptional regulator; Autoregulatory, oleate-activated transcription factor; subunit of a heterodimeric complex with Oaf1p, which binds to oleate-response elements (ORE) in the promoter of genes involved in beta-oxidation of fatty acids, peroxisome organization and biogenesis, activating transcription in the presence of oleate; PIP2 has a paralog, OAF1, that arose from the whole genome duplication. (996 aa) | ||||
GCR1 | Transcriptional activator of genes involved in glycolysis; DNA-binding protein that interacts and functions with the transcriptional activator Gcr2p. (785 aa) | ||||
RDS2 | Regulator of drug sensitivity 2; Transcription factor involved in regulating gluconeogenesis; also involved in the regulation of glyoxylate cycle genes; member of the zinc cluster family of proteins; confers resistance to ketoconazole. (446 aa) | ||||
GAL4 | Regulatory protein GAL4; DNA-binding transcription factor required for activating GAL genes; responds to galactose; repressed by Gal80p and activated by Gal3p. (881 aa) | ||||
ARR1 | AP-1-like transcription factor YAP8; Transcriptional activator of the basic leucine zipper (bZIP) family; required for transcription of genes involved in resistance to arsenic compounds; directly binds trivalent arsenic (As(III)) as does K. lactis ortholog, KIYAP8. (294 aa) |