Your Input: | |||||
DAL3 | Ureidoglycolate lyase; converts ureidoglycolate to glyoxylate and urea in the third step of allantoin degradation; expression is sensitive to nitrogen catabolite repression; this enzyme is sometimes referred to "ureidoglycolate hydrolase" but should not be confused with the Arabidopsis thaliana ureidoglycolate hydrolase enzyme which converts ureidoglycolate to glyoxylate, ammonia and carbon dioxide. (195 aa) | ||||
GUD1 | Guanine deaminase; a catabolic enzyme of the guanine salvage pathway producing xanthine and ammonia from guanine; activity is low in exponentially-growing cultures but expression is increased in post-diauxic and stationary-phase cultures. (489 aa) | ||||
HPT1 | Dimeric hypoxanthine-guanine phosphoribosyltransferase; catalyzes the transfer of the phosphoribosyl portion of 5-phosphoribosyl-alpha-1-pyrophosphate to a purine base (either guanine or hypoxanthine) to form pyrophosphate and a purine nucleotide (either guanosine monophosphate or inosine monophosphate); mutations in the human homolog HPRT1 can cause Lesch-Nyhan syndrome and Kelley-Seegmiller syndrome. (221 aa) | ||||
ADE8 | Phosphoribosylglycinamide formyltransferase; Phosphoribosyl-glycinamide transformylase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway. (214 aa) | ||||
APT2 | Potential adenine phosphoribosyltransferase; encodes a protein with similarity to adenine phosphoribosyltransferase, but artificially expressed protein exhibits no enzymatic activity; APT2 has a paralog, APT1, that arose from the whole genome duplication. (181 aa) | ||||
ADE5,7 | Bifunctional purine biosynthetic protein ADE5,7; Enzyme of the 'de novo' purine nucleotide biosynthetic pathway; contains aminoimidazole ribotide synthetase and glycinamide ribotide synthetase activities; In the C-terminal section; belongs to the AIR synthase family. (802 aa) | ||||
DAL1 | Allantoinase; converts allantoin to allantoate in the first step of allantoin degradation; expression sensitive to nitrogen catabolite repression; Belongs to the metallo-dependent hydrolases superfamily. Allantoinase family. (460 aa) | ||||
ADE3 | C-1-tetrahydrofolate synthase, cytoplasmic; Cytoplasmic trifunctional enzyme C1-tetrahydrofolate synthase; involved in single carbon metabolism and required for biosynthesis of purines, thymidylate, methionine, and histidine; null mutation causes auxotrophy for adenine and histidine. (946 aa) | ||||
SER1 | 3-phosphoserine aminotransferase; catalyzes the formation of phosphoserine from 3-phosphohydroxypyruvate, required for serine and glycine biosynthesis; regulated by the general control of amino acid biosynthesis mediated by Gcn4p; protein abundance increases in response to DNA replication stress; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (395 aa) | ||||
ADE2 | Phosphoribosylaminoimidazole carboxylase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway; red pigment accumulates in mutant cells deprived of adenine. (571 aa) | ||||
AAH1 | Adenine deaminase (adenine aminohydrolase); converts adenine to hypoxanthine; involved in purine salvage; transcriptionally regulated by nutrient levels and growth phase; Aah1p degraded upon entry into quiescence via SCF and the proteasome. (347 aa) | ||||
ADE4 | Amidophosphoribosyltransferase; Phosphoribosylpyrophosphate amidotransferase (PRPPAT); catalyzes first step of the 'de novo' purine nucleotide biosynthetic pathway; also known as amidophosphoribosyltransferase; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (510 aa) | ||||
AMD1 | AMP deaminase; tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; thought to be involved in regulation of intracellular purine (adenine, guanine, and inosine) nucleotide pools. (810 aa) | ||||
APT1 | Adenine phosphoribosyltransferase; catalyzes the formation of AMP from adenine and 5-phosphoribosylpyrophosphate; involved in the salvage pathway of purine nucleotide biosynthesis; APT1 has a paralog, APT2, that arose from the whole genome duplication. (187 aa) | ||||
MTD1 | Methylenetetrahydrofolate dehydrogenase [NAD(+)]; NAD-dependent 5,10-methylenetetrahydrafolate dehydrogenase; plays a catalytic role in oxidation of cytoplasmic one-carbon units; expression is regulated by Bas1p and Bas2p, repressed by adenine, and may be induced by inositol and choline; Belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (320 aa) | ||||
XPT1 | Xanthine phosphoribosyltransferase 1; Xanthine-guanine phosphoribosyl transferase; required for xanthine utilization and for optimal utilization of guanine. (209 aa) | ||||
ADO1 | Adenosine kinase; required for the utilization of S-adenosylmethionine (AdoMet); may be involved in recycling adenosine produced through the methyl cycle. (340 aa) | ||||
DAL7 | Malate synthase; can accept butyryl-CoA as acyl-CoA donor in addition to traditional substrate acetyl-CoA; recycles glyoxylate generated during allantoin degradation; SWAT-GFP and mCherry fusion proteins localize to the cytosol; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation. (554 aa) | ||||
DAL2 | Allantoicase; converts allantoate to urea and ureidoglycolate in the second step of allantoin degradation; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation. (343 aa) | ||||
DAL4 | Allantoin permease; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Belongs to the purine-cytosine permease (2.A.39) family. (635 aa) |