STRINGSTRING
ADH3 ADH3 CAR2 CAR2 BNA5 BNA5 ASP3-4 ASP3-4 ASP3-3 ASP3-3 CAR1 CAR1 ADH1 ADH1 LAP3 LAP3 ADH2 ADH2 GAD1 GAD1 GCV2 GCV2 GCV3 GCV3 BNA4 BNA4 UGA2 UGA2 BAT2 BAT2 ADH5 ADH5 SHM1 SHM1 CHA1 CHA1 THI3 THI3 SFA1 SFA1 UGA3 UGA3 GDH2 GDH2 DTD1 DTD1 GCV1 GCV1 EHD3 EHD3 ALT2 ALT2 KGD2 KGD2 ASP1 ASP1 ARO10 ARO10 ARO80 ARO80 BNA7 BNA7 GLY1 GLY1 SAH1 SAH1 ILV1 ILV1 LPD1 LPD1 IRC7 IRC7 DSD1 DSD1 BNA2 BNA2 ADH4 ADH4 UGA1 UGA1 PDC6 PDC6 ASP3-2 ASP3-2 ASP3-1 ASP3-1 PUT1 PUT1 PDC5 PDC5 CHA4 CHA4 ALT1 ALT1 SHM2 SHM2 PDC1 PDC1 AAT1 AAT1 PUT2 PUT2 ARO9 ARO9 BAT1 BAT1 XBP1 XBP1 BNA3 BNA3 BNA1 BNA1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ADH3Mitochondrial alcohol dehydrogenase isozyme III; involved in the shuttling of mitochondrial NADH to the cytosol under anaerobic conditions and ethanol production. (375 aa)
CAR2L-ornithine transaminase (OTAse); catalyzes the second step of arginine degradation, expression is dually-regulated by allophanate induction and a specific arginine induction process; not nitrogen catabolite repression sensitive; protein abundance increases in response to DNA replication stress; human homolog OAT complements yeast null mutant. (424 aa)
BNA5Kynureninase; required for the de novo biosynthesis of NAD from tryptophan via kynurenine; expression regulated by Hst1p. (453 aa)
ASP3-4Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-4 has a paralog, ASP3-2, that arose from a segmental duplication. (362 aa)
ASP3-3Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-3 has a paralog, ASP3-1, that arose from a segmental duplication. (362 aa)
CAR1Arginase, catabolizes arginine to ornithine and urea; expression responds to both induction by arginine and nitrogen catabolite repression; disruption decreases production of carcinogen ethyl carbamate during wine fermentation and also enhances freeze tolerance. (333 aa)
ADH1Alcohol dehydrogenase; fermentative isozyme active as homo- or heterotetramers; required for the reduction of acetaldehyde to ethanol, the last step in the glycolytic pathway; ADH1 has a paralog, ADH5, that arose from the whole genome duplication. (348 aa)
LAP3Cysteine proteinase 1, mitochondrial; Cysteine aminopeptidase with homocysteine-thiolactonase activity; protects cells against homocysteine toxicity; has bleomycin hydrolase activity in vitro; transcription is regulated by galactose via Gal4p; orthologous to human BLMH; Belongs to the peptidase C1 family. (454 aa)
ADH2Glucose-repressible alcohol dehydrogenase II; catalyzes the conversion of ethanol to acetaldehyde; involved in the production of certain carboxylate esters; regulated by ADR1. (348 aa)
GAD1Glutamate decarboxylase; converts glutamate into gamma-aminobutyric acid (GABA) during glutamate catabolism; involved in response to oxidative stress. (585 aa)
GCV2P subunit of the mitochondrial glycine decarboxylase complex; glycine decarboxylase is required for the catabolism of glycine to 5,10-methylene-THF; expression is regulated by levels of 5,10-methylene-THF in the cytoplasm. (1034 aa)
GCV3H subunit of the mitochondrial glycine decarboxylase complex; glycine decarboxylase is required for the catabolism of glycine to 5,10-methylene-THF; also required for all protein lipoylation; expression is regulated by levels of 5,10-methylene-THF; Belongs to the GcvH family. (170 aa)
BNA4Kynurenine 3-monooxygenase; required for the de novo biosynthesis of NAD from tryptophan via kynurenine; expression regulated by Hst1p; putative therapeutic target for Huntington disease. (460 aa)
UGA2Succinate-semialdehyde dehydrogenase [NADP(+)]; Succinate semialdehyde dehydrogenase; involved in the utilization of gamma-aminobutyrate (GABA) as a nitrogen source; part of the 4-aminobutyrate and glutamate degradation pathways; localized to the cytoplasm. (497 aa)
BAT2Branched-chain-amino-acid aminotransferase, cytosolic; Cytosolic branched-chain amino acid (BCAA) aminotransferase; preferentially involved in BCAA catabolism; homolog of murine ECA39; highly expressed during stationary phase and repressed during logarithmic phase; BAT2 has a paralog, BAT1, that arose from the whole genome duplication; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (376 aa)
ADH5Alcohol dehydrogenase isoenzyme V; involved in ethanol production; ADH5 has a paralog, ADH1, that arose from the whole genome duplication; Belongs to the zinc-containing alcohol dehydrogenase family. (351 aa)
SHM1Mitochondrial serine hydroxymethyltransferase; converts serine to glycine plus 5,10 methylenetetrahydrofolate; involved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; reverse reaction generates serine; Belongs to the SHMT family. (490 aa)
CHA1Catabolic L-serine/threonine dehydratase; Catabolic L-serine (L-threonine) deaminase; catalyzes the degradation of both L-serine and L-threonine; required to use serine or threonine as the sole nitrogen source, transcriptionally induced by serine and threonine; Belongs to the serine/threonine dehydratase family. (360 aa)
THI3Thiamine metabolism regulatory protein THI3; Regulatory protein that binds Pdc2p and Thi2p transcription factors; activates thiamine biosynthesis transcription factors Pdc2p and Thi2p by binding to them, but releases and de-activates them upon binding to thiamine pyrophosphate (TPP), the end product of the pathway; has similarity to decarboxylases but enzymatic activity is not detected. (609 aa)
SFA1Bifunctional alcohol dehydrogenase and formaldehyde dehydrogenase; formaldehyde dehydrogenase activity is glutathione-dependent; functions in formaldehyde detoxification and formation of long chain and complex alcohols, regulated by Hog1p-Sko1p; protein abundance increases in response to DNA replication stress. (386 aa)
UGA3Transcriptional activator for GABA-dependent induction of GABA genes; binds to DNA elements found in the promoters of target genes and increases their expression in the presence of GABA (gamma-aminobutyrate); zinc finger transcription factor of the Zn(2)-Cys(6) binuclear cluster domain type; localized to the nucleus; examples of GABA genes include UGA1, UGA2, and UGA4. (528 aa)
GDH2NAD(+)-dependent glutamate dehydrogenase; degrades glutamate to ammonia and alpha-ketoglutarate; expression sensitive to nitrogen catabolite repression and intracellular ammonia levels; genetically interacts with GDH3 by suppressing stress-induced apoptosis. (1092 aa)
DTD1D-Tyr-tRNA(Tyr) deacylase; functions in protein translation, may affect nonsense suppression via alteration of the protein synthesis machinery; ubiquitous among eukaryotes; Belongs to the DTD family. (150 aa)
GCV1T subunit of the mitochondrial glycine decarboxylase complex; glycine decarboxylase is required for the catabolism of glycine to 5,10-methylene-THF; expression is regulated by levels of levels of 5,10-methylene-THF in the cytoplasm. (400 aa)
EHD33-hydroxyisobutyryl-CoA hydrolase, mitochondrial; 3-hydroxyisobutyryl-CoA hydrolase; member of a family of enoyl-CoA hydratase/isomerases; non-tagged protein is detected in highly purified mitochondria in high-throughput studies; phosphorylated; mutation affects fluid-phase endocytosis. (500 aa)
ALT2Probable alanine aminotransferase; Catalytically inactive alanine transaminase; expression is repressed in the presence of alanine and repression is mediated by Nrg1p; ALT2 has a paralog, ALT1, that arose from the whole genome duplication; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. Alanine aminotransferase subfamily. (507 aa)
KGD22-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase); Dihydrolipoyl transsuccinylase; component of the mitochondrial alpha-ketoglutarate dehydrogenase complex, which catalyzes the oxidative decarboxylation of alpha-ketoglutarate to succinyl-CoA in the TCA cycle; phosphorylated. (463 aa)
ASP1Cytosolic L-asparaginase, involved in asparagine catabolism; catalyzes hydrolysis of L-asparagine to aspartic acid and ammonia; important enzyme for the treatment of acute lymphoblastic leukemia; has low glutaminase activity and dependence; synthesized constitutively. (381 aa)
ARO10Transaminated amino acid decarboxylase; Phenylpyruvate decarboxylase; catalyzes decarboxylation of phenylpyruvate to phenylacetaldehyde, which is the first specific step in the Ehrlich pathway; involved in protein N-terminal Met and Ala catabolism. (635 aa)
ARO80Zinc finger transcriptional activator of the Zn2Cys6 family; activates transcription of aromatic amino acid catabolic genes in the presence of aromatic amino acids. (950 aa)
BNA7Formylkynurenine formamidase; involved in the de novo biosynthesis of NAD from tryptophan via kynurenine. (261 aa)
GLY1Low specificity L-threonine aldolase; Threonine aldolase; catalyzes the cleavage of L-allo-threonine and L-threonine to glycine; involved in glycine biosynthesis. (387 aa)
SAH1Adenosylhomocysteinase; S-adenosyl-L-homocysteine hydrolase; catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor; regulates cellular lipid homoeostasis by regulating phosphatidylcholine(PC)synthesis and triacylglycerol (TG) levels. (449 aa)
ILV1Threonine dehydratase, mitochondrial; Threonine deaminase, catalyzes first step in isoleucine biosynthesis; expression is under general amino acid control; ILV1 locus exhibits highly positioned nucleosomes whose organization is independent of known ILV1 regulation; Belongs to the serine/threonine dehydratase family. (576 aa)
LPD1Dihydrolipoyl dehydrogenase, mitochondrial; Dihydrolipoamide dehydrogenase; the lipoamide dehydrogenase component (E3) of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multi-enzyme complexes; PDH complex is concentrated in spots within the mitochondrial matrix, often near the ERMES complex and near peroxisomes; LPD1 has a paralog, IRC15, that arose from the whole genome duplication; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (499 aa)
IRC7Putative cystathionine beta-lyase; Beta-lyase involved in the production of thiols; null mutant displays increased levels of spontaneous Rad52p foci; expression induced by nitrogen limitation in a GLN3, GAT1-dependent manner and by copper levels in a Mac1-dependent manner. (340 aa)
DSD1D-serine dehydratase (aka D-serine ammonia-lyase); converts D-serine to pyruvate and ammonia by a reaction dependent on pyridoxal 5'-phosphate and zinc; may play a role in D-serine detoxification; L-serine is not a substrate. (428 aa)
BNA2Tryptophan 2,3-dioxygenase or indoleamine 2,3-dioxygenase; required for de novo biosynthesis of NAD from tryptophan via kynurenine; interacts genetically with telomere capping gene CDC13; regulated by Hst1p and Aftp. (453 aa)
ADH4Alcohol dehydrogenase isoenzyme type IV; dimeric enzyme demonstrated to be zinc-dependent despite sequence similarity to iron-activated alcohol dehydrogenases; transcription is induced in response to zinc deficiency. (382 aa)
UGA14-aminobutyrate aminotransferase; Gamma-aminobutyrate (GABA) transaminase; also known as 4-aminobutyrate aminotransferase; involved in the 4-aminobutyrate and glutamate degradation pathways; required for normal oxidative stress tolerance and nitrogen utilization; protein abundance increases in response to DNA replication stress; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (471 aa)
PDC6Minor isoform of pyruvate decarboxylase; decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol-dependent, and is strongly induced during sulfur limitation; Belongs to the TPP enzyme family. (563 aa)
ASP3-2Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-2 has a paralog, ASP3-4, that arose from a segmental duplication. (362 aa)
ASP3-1Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. (362 aa)
PUT1Proline oxidase; nuclear-encoded mitochondrial protein involved in utilization of proline as sole nitrogen source; PUT1 transcription is induced by Put3p in the presence of proline and the absence of a preferred nitrogen source. (476 aa)
PDC5Minor isoform of pyruvate decarboxylase; key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde, regulation is glucose- and ethanol-dependent, repressed by thiamine, involved in amino acid catabolism. (563 aa)
CHA4Activatory protein CHA4; DNA binding transcriptional activator; mediates serine/threonine activation of the catabolic L-serine (L-threonine) deaminase (CHA1); Zinc-finger protein with Zn[2]-Cys[6] fungal-type binuclear cluster domain. (648 aa)
ALT1Probable alanine aminotransferase, mitochondrial; Alanine transaminase (glutamic pyruvic transaminase); involved in alanine biosynthesis and catabolism; TOR1-independent role in determining chronological lifespan; expression is induced in the presence of alanine; repression is mediated by Nrg1p; ALT1 has a paralog, ALT2, that arose from the whole genome duplication; Alt2p is catalytically inactive; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. Alanine aminotransferase subfamily. (592 aa)
SHM2Cytosolic serine hydroxymethyltransferase; converts serine to glycine plus 5,10 methylenetetrahydrofolate; major isoform involved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; Belongs to the SHMT family. (469 aa)
PDC1Major of three pyruvate decarboxylase isozymes; key enzyme in alcoholic fermentation; decarboxylates pyruvate to acetaldehyde; involved in amino acid catabolism; subject to glucose-, ethanol-, and autoregulation; activated by phosphorylation in response to glucose levels; N-terminally propionylated in vivo; Belongs to the TPP enzyme family. (563 aa)
AAT1Mitochondrial aspartate aminotransferase; catalyzes the conversion of oxaloacetate to aspartate in aspartate and asparagine biosynthesis. (451 aa)
PUT2Delta-1-pyrroline-5-carboxylate dehydrogenase; nuclear-encoded mitochondrial protein involved in utilization of proline as sole nitrogen source; deficiency of human homolog ALDH4A1 causes type II hyperprolinemia (HPII), an autosomal recessive inborn error of metabolism; human homolog ALDH4A1 can complement yeast null mutant. (575 aa)
ARO9Aromatic aminotransferase II; catalyzes the first step of tryptophan, phenylalanine, and tyrosine catabolism; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (513 aa)
BAT1Branched-chain-amino-acid aminotransferase, mitochondrial; Mitochondrial branched-chain amino acid (BCAA) aminotransferase; preferentially involved in BCAA biosynthesis; homolog of murine ECA39; highly expressed during logarithmic phase and repressed during stationary phase; BAT1 has a paralog, BAT2, that arose from the whole genome duplication; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (393 aa)
XBP1Transcriptional repressor; binds promoter sequences of cyclin genes, CYS3, and SMF2; not expressed during log phase of growth, but induced by stress or starvation during mitosis, and late in meiosis; represses 15% of all yeast genes as cells transition to quiescence; important for maintaining G1 arrest and for longevity of quiescent cells; member of Swi4p/Mbp1p family; phosphorylated by Cdc28p; relative distribution to nucleus increases upon DNA replication stress. (647 aa)
BNA3Probable kynurenine--oxoglutarate transaminase BNA3; Kynurenine aminotransferase; catalyzes formation of kynurenic acid from kynurenine; potential Cdc28p substrate. (444 aa)
BNA13-hydroxyanthranilate 3,4-dioxygenase; 3-hydroxyanthranilic acid dioxygenase; required for the de novo biosynthesis of NAD from tryptophan via kynurenine; expression regulated by Hst1p. (177 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (4%) [HD]