Your Input: | |||||
IMD4 | Inosine-5'-monophosphate dehydrogenase 4; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in the de novo synthesis of GTP; member of a four-gene family in S. cerevisiae, constitutively expressed; IMD4 has a paralog, IMD3, that arose from the whole genome duplication. (524 aa) | ||||
AMD1 | AMP deaminase; tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; thought to be involved in regulation of intracellular purine (adenine, guanine, and inosine) nucleotide pools. (810 aa) | ||||
APT1 | Adenine phosphoribosyltransferase; catalyzes the formation of AMP from adenine and 5-phosphoribosylpyrophosphate; involved in the salvage pathway of purine nucleotide biosynthesis; APT1 has a paralog, APT2, that arose from the whole genome duplication. (187 aa) | ||||
DCD1 | Deoxycytidine monophosphate (dCMP) deaminase; involved in dUMP and dTMP biosynthesis; expression is NOT cell cycle regulated. (312 aa) | ||||
FUR1 | Uracil phosphoribosyltransferase; synthesizes UMP from uracil; involved in the pyrimidine salvage pathway. (216 aa) | ||||
PRS3 | Ribose-phosphate pyrophosphokinase 3; 5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase; synthesizes PRPP, which is required for nucleotide, histidine, and tryptophan biosynthesis; one of five related enzymes, which are active as heteromultimeric complexes; Belongs to the ribose-phosphate pyrophosphokinase family. (320 aa) | ||||
ADE6 | Phosphoribosylformylglycinamidine synthase; Formylglycinamidine-ribonucleotide (FGAM)-synthetase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway. (1358 aa) | ||||
ADE5,7 | Bifunctional purine biosynthetic protein ADE5,7; Enzyme of the 'de novo' purine nucleotide biosynthetic pathway; contains aminoimidazole ribotide synthetase and glycinamide ribotide synthetase activities; In the C-terminal section; belongs to the AIR synthase family. (802 aa) | ||||
YGL101W | HD domain-containing protein YGL101W; Protein of unknown function; non-essential gene; interacts with the DNA helicase Hpr5p; YGL101W has a paralog, YBR242W, that arose from the whole genome duplication. (215 aa) | ||||
ADK2 | GTP:AMP phosphotransferase, mitochondrial; Mitochondrial adenylate kinase; catalyzes the reversible synthesis of GTP and AMP from GDP and ADP; may serve as a back-up for synthesizing GTP or ADP depending on metabolic conditions; 3' sequence of ADK2 varies with strain background. (225 aa) | ||||
PRS2 | Ribose-phosphate pyrophosphokinase 2; 5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase, synthesizes PRPP; which is required for nucleotide, histidine, and tryptophan biosynthesis; one of five related enzymes, which are active as heteromultimeric complexes; PRS2 has a paralog, PRS4, that arose from the whole genome duplication. (318 aa) | ||||
URA3 | Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa) | ||||
GUK1 | Guanylate kinase; converts GMP to GDP; required for growth and mannose outer chain elongation of cell wall N-linked glycoproteins. (187 aa) | ||||
CDC8 | Thymidylate and uridylate kinase; functions in de novo biosynthesis of pyrimidine deoxyribonucleotides; converts dTMP to dTDP and dUMP to dUTP; essential for mitotic and meiotic DNA replication; homologous to S. pombe tmp1; human homolog DTYMK can complement yeast cdc8 null mutant. (216 aa) | ||||
URA2 | Glutamine-dependent carbamoyl-phosphate synthase; Bifunctional carbamoylphosphate synthetase/aspartate transcarbamylase; catalyzes the first two enzymatic steps in the de novo biosynthesis of pyrimidines; both activities are subject to feedback inhibition by UTP; In the central section; belongs to the metallo-dependent hydrolases superfamily. DHOase family. CAD subfamily. (2214 aa) | ||||
FCY1 | Cytosine deaminase; zinc metalloenzyme that catalyzes the hydrolytic deamination of cytosine to uracil; of biomedical interest because it also catalyzes the deamination of 5-fluorocytosine (5FC) to form anticancer drug 5-fluorouracil (5FU); Belongs to the cytidine and deoxycytidylate deaminase family. (158 aa) | ||||
ADE2 | Phosphoribosylaminoimidazole carboxylase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway; red pigment accumulates in mutant cells deprived of adenine. (571 aa) | ||||
CDC21 | Thymidylate synthase; required for de novo biosynthesis of pyrimidine deoxyribonucleotides; expression is induced at G1/S; human homolog TYMSOS can complement yeast cdc21 temperature-sensitive mutant at restrictive temperature. (304 aa) | ||||
PRS5 | Ribose-phosphate pyrophosphokinase 5; 5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase; synthesizes PRPP, which is required for nucleotide, histidine, and tryptophan biosynthesis; one of five related enzymes, which are active as heteromultimeric complexes; forms cytoplasmic foci upon DNA replication stress; Belongs to the ribose-phosphate pyrophosphokinase family. (496 aa) | ||||
URK1 | Uridine/cytidine kinase; component of the pyrimidine ribonucleotide salvage pathway that converts uridine into UMP and cytidine into CMP; involved in the pyrimidine deoxyribonucleotide salvage pathway, converting deoxycytidine into dCMP. (501 aa) | ||||
SNZ2 | Probable pyridoxal 5'-phosphate synthase subunit SNZ2; Member of a stationary phase-induced gene family; transcription of SNZ2 is induced prior to diauxic shift, and also in the absence of thiamin in a Thi2p-dependent manner; forms a coregulated gene pair with SNO2; interacts with Thi11p. (298 aa) | ||||
RAD50 | DNA repair protein RAD50; Subunit of MRX complex with Mre11p and Xrs2p; complex is involved in processing double-strand DNA breaks in vegetative cells, initiation of meiotic DSBs, telomere maintenance, and nonhomologous end joining; forms nuclear foci upon DNA replication stress; Belongs to the SMC family. RAD50 subfamily. (1312 aa) | ||||
ADE12 | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence. (433 aa) | ||||
AAH1 | Adenine deaminase (adenine aminohydrolase); converts adenine to hypoxanthine; involved in purine salvage; transcriptionally regulated by nutrient levels and growth phase; Aah1p degraded upon entry into quiescence via SCF and the proteasome. (347 aa) | ||||
ADE4 | Amidophosphoribosyltransferase; Phosphoribosylpyrophosphate amidotransferase (PRPPAT); catalyzes first step of the 'de novo' purine nucleotide biosynthetic pathway; also known as amidophosphoribosyltransferase; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (510 aa) | ||||
URA10 | Minor orotate phosphoribosyltransferase (OPRTase) isozyme; catalyzes the fifth enzymatic step in the de novo biosynthesis of pyrimidines, converting orotate into orotidine-5'-phosphate; URA10 has a paralog, URA5, that arose from the whole genome duplication; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrE subfamily. (227 aa) | ||||
MRE11 | Double-strand break repair protein MRE11; Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress; Belongs to the MRE11/RAD32 family. (692 aa) | ||||
GUA1 | GMP synthase; highly conserved enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5'-phosphate (IMP); transcription is not subject to regulation by guanine but is negatively regulated by nutrient starvation; reduction-of-function mutation gua1-G388D causes changes in cellular guanine nucleotide pools, defects in general protein synthesis, and impaired translation of GCN4 mRNA. (525 aa) | ||||
IMD2 | Inosine-5'-monophosphate dehydrogenase 2; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitation; IMD2 has a paralog, YAR073W/YAR075W, that arose from a segmental duplication. (523 aa) | ||||
IMD3 | Inosine-5'-monophosphate dehydrogenase 3; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in the de novo synthesis of GTP; member of a four-gene family in S. cerevisiae, constitutively expressed; IMD3 has a paralog, IMD4, that arose from the whole genome duplication; Belongs to the IMPDH/GMPR family. (523 aa) | ||||
URA4 | Dihydroorotase; catalyzes the third enzymatic step in the de novo biosynthesis of pyrimidines, converting carbamoyl-L-aspartate into dihydroorotate. (364 aa) | ||||
ADE13 | Adenylosuccinate lyase; catalyzes two steps in the 'de novo' purine nucleotide biosynthetic pathway; expression is repressed by adenine and activated by Bas1p and Pho2p; mutations in human ortholog ADSL cause adenylosuccinase deficiency; human ADSL can complement yeast ADE13 null mutant. (482 aa) | ||||
ADE16 | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family. (591 aa) | ||||
URA1 | Dihydroorotate dehydrogenase; catalyzes the fourth enzymatic step in the de novo biosynthesis of pyrimidines, converting dihydroorotic acid into orotic acid. (314 aa) | ||||
PRS1 | Ribose-phosphate pyrophosphokinase 1; 5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase; synthesizes PRPP, which is required for nucleotide, histidine, and tryptophan biosynthesis; plays a key role in cell wall integrity (CWI) pathway; one of five related enzymes, which are active as heteromultimeric complexes; missense mutations in human homolog PRPS1 are associated with neuropathic Arts syndrome and Charcot-Marie Tooth (CMTX5) disease; Belongs to the ribose-phosphate pyrophosphokinase family. (427 aa) | ||||
ADE1 | Phosphoribosylaminoimidazole-succinocarboxamide synthase; N-succinyl-5-aminoimidazole-4-carboxamide ribotide synthetase; required for 'de novo' purine nucleotide biosynthesis; red pigment accumulates in mutant cells deprived of adenine; protein abundance increases in response to DNA replication stress. (306 aa) | ||||
PRS4 | Ribose-phosphate pyrophosphokinase 4; 5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase, synthesizes PRPP; which is required for nucleotide, histidine, and tryptophan biosynthesis; one of five related enzymes, which are active as heteromultimeric complexes; PRS4 has a paralog, PRS2, that arose from the whole genome duplication; a missense mutation in the conserved residue R196 of its human homolog PRPS1 is pathogenic; Belongs to the ribose-phosphate pyrophosphokinase family. (326 aa) | ||||
YBR242W | HD domain-containing protein YBR242W; Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and nucleus; YBR242W is not an essential gene; YBR242W has a paralog, YGL101W, that arose from the whole genome duplication. (238 aa) | ||||
DUT1 | Deoxyuridine 5'-triphosphate nucleotidohydrolase; Deoxyuridine triphosphate diphosphatase (dUTPase); catalyzes hydrolysis of dUTP to dUMP and PPi, thereby preventing incorporation of uracil into DNA during replication; critical for the maintenance of genetic stability; also has diphosphatase activity on deoxyinosine triphosphate; human homolog DUT allows growth of yeast haploid dut1 null mutant after sporulation of heterozygous diploid. (147 aa) | ||||
FAP7 | Adenylate kinase isoenzyme 6 homolog FAP7; Essential NTPase required for small ribosome subunit synthesis; mediates processing of the 20S pre-rRNA at site D in the cytoplasm but associates only transiently with 43S preribosomes via Rps14p; complex with Rps14 is conserved between humans, yeast, and arches; may be the endonuclease for site D; depletion leads to accumulation of pre-40S ribosomes in 80S-like ribosomes; human TAF9 functionally complements the lethality of the null mutation. (197 aa) | ||||
DAS2 | Putative uridine kinase DAS2; Putative protein of unknown function; non-essential gene identified in a screen for mutants with increased levels of rDNA transcription; weak similarity with uridine kinases and with phosphoribokinases; Belongs to the uridine kinase family. (232 aa) | ||||
ADK1 | Adenylate kinase, required for purine metabolism; localized to the cytoplasm and the mitochondria; lacks cleavable signal sequence; protein abundance increases in response to DNA replication stress; mutations affecting Adk1p catalytic activity deregulate expression of phosphate utilization genes PHO5 and PHO84; human homolog AK1 can complement yeast adk1 mutant. (222 aa) | ||||
FMN1 | Riboflavin kinase, produces riboflavin monophosphate (FMN); FMN is a necessary cofactor for many enzymes; predominantly localizes to the microsomal fraction and also found in the mitochondrial inner membrane; human RFK functionally complements the lethality of the null mutation. (218 aa) | ||||
HPT1 | Dimeric hypoxanthine-guanine phosphoribosyltransferase; catalyzes the transfer of the phosphoribosyl portion of 5-phosphoribosyl-alpha-1-pyrophosphate to a purine base (either guanine or hypoxanthine) to form pyrophosphate and a purine nucleotide (either guanosine monophosphate or inosine monophosphate); mutations in the human homolog HPRT1 can cause Lesch-Nyhan syndrome and Kelley-Seegmiller syndrome. (221 aa) | ||||
ADE8 | Phosphoribosylglycinamide formyltransferase; Phosphoribosyl-glycinamide transformylase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway. (214 aa) | ||||
URA6 | Uridylate kinase; catalyzes the seventh enzymatic step in the de novo biosynthesis of pyrimidines, converting uridine monophosphate (UMP) into uridine-5'-diphosphate (UDP); Belongs to the adenylate kinase family. UMP-CMP kinase subfamily. (204 aa) | ||||
XPT1 | Xanthine phosphoribosyltransferase 1; Xanthine-guanine phosphoribosyl transferase; required for xanthine utilization and for optimal utilization of guanine. (209 aa) | ||||
ADO1 | Adenosine kinase; required for the utilization of S-adenosylmethionine (AdoMet); may be involved in recycling adenosine produced through the methyl cycle. (340 aa) | ||||
APT2 | Potential adenine phosphoribosyltransferase; encodes a protein with similarity to adenine phosphoribosyltransferase, but artificially expressed protein exhibits no enzymatic activity; APT2 has a paralog, APT1, that arose from the whole genome duplication. (181 aa) | ||||
ADE17 | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE17 has a paralog, ADE16, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family. (592 aa) | ||||
URA5 | Major orotate phosphoribosyltransferase (OPRTase) isozyme; catalyzes the fifth enzymatic step in de novo biosynthesis of pyrimidines, converting orotate into orotidine-5'-phosphate; URA5 has a paralog, URA10, that arose from the whole genome duplication; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrE subfamily. (226 aa) |