STRINGSTRING
ERR3 ERR3 ACO1 ACO1 PUS5 PUS5 FOX2 FOX2 FAS1 FAS1 NNR2 NNR2 TCD2 TCD2 ARO1 ARO1 LYS4 LYS4 HSP31 HSP31 DDI2 DDI2 LEU1 LEU1 TRP5 TRP5 HEM2 HEM2 CYS4 CYS4 ENO1 ENO1 YHL018W YHL018W TCD1 TCD1 HTD2 HTD2 ENO2 ENO2 PHS1 PHS1 ACO2 ACO2 ILV3 ILV3 MDE1 MDE1 PDH1 PDH1 ERR2 ERR2 HSP32 HSP32 FUM1 FUM1 ERR1 ERR1 HSP33 HSP33 HEM4 HEM4 HIS3 HIS3 DDI3 DDI3 PHA2 PHA2 NCE103 NCE103 SNO4 SNO4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ERR3Enolase-related protein 3; Enolase, a phosphopyruvate hydratase; catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate; complements the growth defect of an ENO1 ENO2 double mutant in glucose. (437 aa)
ACO1Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. (778 aa)
PUS521S rRNA pseudouridine(2819) synthase; Pseudouridine synthase; catalyzes only the formation of pseudouridine (Psi)-2819 in mitochondrial 21S rRNA; not essential for viability. (254 aa)
FOX2Peroxisomal hydratase-dehydrogenase-epimerase; 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase; multifunctional enzyme of the peroxisomal fatty acid beta-oxidation pathway; mutation is functionally complemented by human HSD17B4. (900 aa)
FAS13-hydroxyacyl-[acyl-carrier-protein] dehydratase; Beta subunit of fatty acid synthetase; complex catalyzes the synthesis of long-chain saturated fatty acids; contains acetyltransacylase, dehydratase, enoyl reductase, malonyl transacylase, and palmitoyl transacylase activities. (2051 aa)
NNR2Widely-conserved NADHX dehydratase; converts (S)-NADHX to NADH in ATP-dependent manner; YKL151C promoter contains STREs (stress response elements) and expression is induced by heat shock or methyl methanesulfonate; downstream intergenic region drives antisense expression and mediates coordinated regulation of YKL151C and GPM1 phosphoglycerate mutase; protein abundance increases in response to DNA replication stress; homolog of Carkd in mammals and C-terminus of YjeF in E.coli; Belongs to the NnrD/CARKD family. (337 aa)
TCD2tRNA threonylcarbamoyladenosine dehydratase; required for the ct6A tRNA base modification, where an adenosine at position 37 is modified to form a cyclized active ester with an oxazolone ring; localized to the mitochondrial outer membrane; TCD2 has a paralog, TCD1, that arose from the whole genome duplication. (447 aa)
ARO13-phosphoshikimate 1-carboxyvinyltransferase; Pentafunctional arom protein; catalyzes steps 2 through 6 in the biosynthesis of chorismate, which is a precursor to aromatic amino acids; In the N-terminal section; belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. In the 3rd section; belongs to the shikimate kinase family. In the C-terminal section; belongs to the shikimate dehydrogenase family. (1588 aa)
LYS4Homoaconitase, mitochondrial; Homoaconitase; catalyzes the conversion of homocitrate to homoisocitrate, which is a step in the lysine biosynthesis pathway. (693 aa)
HSP31Glutathione-independent glyoxalase HSP31; Methylglyoxalase that converts methylglyoxal to D-lactate; involved in oxidative stress resistance, diauxic shift, and stationary phase survival; has similarity to E. coli Hsp31 and C. albicans Glx3p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer; exists as a dimer and contains a putative metal-binding site; protein abundance increases in response to DNA replication stress; Belongs to the peptidase C56 family. HSP31-like subfamily. (237 aa)
DDI2Cyanamide hydratase that detoxifies cyanamide; member of the HD domain metalloprotein superfamily; expression is induced over 100-fold by cyanamide and by SN2-type DNA alkylating agents such as MMS and DMA; induction decreased in rad6 and rad18 mutants; gene and protein are identical to DDI3 and Ddi3p. (225 aa)
LEU13-isopropylmalate dehydratase; Isopropylmalate isomerase; catalyzes the second step in the leucine biosynthesis pathway; Belongs to the aconitase/IPM isomerase family. (779 aa)
TRP5Tryptophan synthase; catalyzes the last step of tryptophan biosynthesis; regulated by the general control system of amino acid biosynthesis; In the N-terminal section; belongs to the TrpA family. (707 aa)
HEM2Delta-aminolevulinic acid dehydratase; Aminolevulinate dehydratase; a homo-octameric enzyme, catalyzes the conversion of 5-aminolevulinate to porphobilinogen, the second step in heme biosynthesis; enzymatic activity is zinc-dependent; localizes to the cytoplasm and nucleus; human homolog ALAD can complement yeast hem2 mutant. (342 aa)
CYS4Cystathionine beta-synthase; catalyzes synthesis of cystathionine from serine and homocysteine, the first committed step in cysteine biosynthesis; responsible for hydrogen sulfide generation; advances passage through START by promoting cell growth which requires catalytic activity, and reducing critical cell size independent of catalytic activity; mutations in human ortholog CBS cause homocystinuria; human CBS can complement yeast null mutant. (507 aa)
ENO1Enolase I, a phosphopyruvate hydratase; catalyzes conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis; expression repressed in response to glucose; protein abundance increases in response to DNA replication stress; N-terminally propionylated in vivo; ENO1 has a paralog, ENO2, that arose from the whole genome duplication. (437 aa)
YHL018WPutative 4a-hydroxytetrahydrobiopterin dehydratase; green fluorescent protein (GFP)-fusion protein localizes to mitochondria and is induced in response to the DNA-damaging agent MMS. (120 aa)
TCD1tRNA threonylcarbamoyladenosine dehydratase; required for the ct6A tRNA base modification, where an adenosine at position 37 is modified to form a cyclized active ester with an oxazolone ring; localized to the mitochondrial outer membrane; TCD1 has a paralog, TCD2, that arose from the whole genome duplication. (429 aa)
HTD2Mitochondrial 3-hydroxyacyl-thioester dehydratase; involved in fatty acid biosynthesis, required for respiratory growth and for normal mitochondrial morphology. (280 aa)
ENO2Enolase II, a phosphopyruvate hydratase; catalyzes conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis; expression induced in response to glucose; ENO2 has a paralog, ENO1, that arose from the whole genome duplication. (437 aa)
PHS1Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase PHS1; Essential 3-hydroxyacyl-CoA dehydratase of the ER membrane; involved in elongation of very long-chain fatty acids; evolutionarily conserved, similar to mammalian PTPLA and PTPLB; involved in sphingolipid biosynthesis and protein trafficking. (217 aa)
ACO2Homocitrate dehydratase, mitochondrial; Putative mitochondrial aconitase isozyme; similarity to Aco1p, an aconitase required for the TCA cycle; expression induced during growth on glucose, by amino acid starvation via Gcn4p, and repressed on ethanol. (789 aa)
ILV3Dihydroxy-acid dehydratase, mitochondrial; Dihydroxyacid dehydratase; catalyzes third step in the common pathway leading to biosynthesis of branched-chain amino acids. (585 aa)
MDE15'-methylthioribulose-1-phosphate dehydratase; acts in the methionine salvage pathway; potential Smt3p sumoylation substrate; expression downregulated by caspofungin and deletion mutant is caspofungin resistant; Belongs to the aldolase class II family. MtnB subfamily. (244 aa)
PDH1Putative 2-methylcitrate dehydratase; mitochondrial protein that participates in respiration; induced by diauxic shift; homologous to E. coli PrpD, may take part in the conversion of 2-methylcitrate to 2-methylisocitrate. (516 aa)
ERR2Enolase, a phosphopyruvate hydratase; catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate; complements the growth defect of an ENO1 ENO2 double mutant. (437 aa)
HSP32Probable glutathione-independent glyoxalase HSP32; Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to E. coli Hsp31 and S. cerevisiae Hsp31p, Hsp33p, and Sno4p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer; Belongs to the peptidase C56 family. HSP31-like subfamily. (237 aa)
FUM1Fumarate hydratase, mitochondrial; Fumarase; converts fumaric acid to L-malic acid in the TCA cycle; cytosolic and mitochondrial distribution determined by the N-terminal targeting sequence, protein conformation, and status of glyoxylate shunt; phosphorylated in mitochondria; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (488 aa)
ERR1Enolase-related protein 1; Putative phosphopyruvate hydratase. (437 aa)
HSP33Probable glutathione-independent glyoxalase HSP33; Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to E. coli Hsp31 and S. cerevisiae Hsp31p, Hsp32p, and Sno4p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer; Belongs to the peptidase C56 family. HSP31-like subfamily. (237 aa)
HEM4Uroporphyrinogen III synthase; catalyzes the conversion of hydroxymethylbilane to uroporphyrinogen III, the fourth step in heme biosynthesis; deficiency in the human homolog can result in the disease congenital erythropoietic porphyria. (275 aa)
HIS3Imidazoleglycerol-phosphate dehydratase; catalyzes the sixth step in histidine biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts; transcription is regulated by general amino acid control via Gcn4p. (220 aa)
DDI3Cyanamide hydratase that detoxifies cyanamide; member of the HD domain metalloprotein superfamily; expression is induced over 100-fold by cyanamide and by SN2-type DNA alkylating agents such as MMS and DMA; induction decreased in rad6 and rad18 mutants; gene and protein are identical to DDI2 and Ddi2p. (225 aa)
PHA2Prephenate dehydratase; catalyzes the conversion of prephanate to phenylpyruvate, which is a step in the phenylalanine biosynthesis pathway. (334 aa)
NCE103Carbonic anhydrase; metalloenzyme that catalyzes CO2 hydration to bicarbonate, which is an important metabolic substrate, and protons; not expressed under conditions of high CO2, such as inside a growing colony, but transcription is induced in response to low CO2 levels, such as on the colony surface in ambient air; poorly transcribed under aerobic conditions and at an undetectable level under anaerobic conditions; abundance increases in response to DNA replication stress. (221 aa)
SNO4Probable glutathione-independent glyoxalase SNO4; Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to bacterial Hsp31 and yeast Hsp31p, Hsp32p, and Hsp33p; DJ-1/ThiJ/PfpI superfamily member; predicted involvement in pyridoxine metabolism; induced by mild heat stress and copper deprivation. (237 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: medium (44%) [HD]