| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| DFR1 | GLR1 | YOR236W | YPL091W | Dihydrofolate reductase involved in tetrahydrofolate biosynthesis; required for respiratory metabolism; mutation is functionally complemented by human DHFR. | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | 0.565 |
| DFR1 | HOM6 | YOR236W | YJR139C | Dihydrofolate reductase involved in tetrahydrofolate biosynthesis; required for respiratory metabolism; mutation is functionally complemented by human DHFR. | Homoserine dehydrogenase (L-homoserine:NADP oxidoreductase); dimeric enzyme that catalyzes the third step in the common pathway for methionine and threonine biosynthesis; enzyme has nucleotide-binding, dimerization and catalytic regions. | 0.500 |
| DFR1 | TDH3 | YOR236W | YGR192C | Dihydrofolate reductase involved in tetrahydrofolate biosynthesis; required for respiratory metabolism; mutation is functionally complemented by human DHFR. | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bacteria; binds AU-rich RNA. | 0.405 |
| GLR1 | DFR1 | YPL091W | YOR236W | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | Dihydrofolate reductase involved in tetrahydrofolate biosynthesis; required for respiratory metabolism; mutation is functionally complemented by human DHFR. | 0.565 |
| GLR1 | GND1 | YPL091W | YHR183W | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. | 0.950 |
| GLR1 | GND2 | YPL091W | YGR256W | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; GND2 has a paralog, GND1, that arose from the whole genome duplication. | 0.905 |
| GLR1 | HOM6 | YPL091W | YJR139C | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | Homoserine dehydrogenase (L-homoserine:NADP oxidoreductase); dimeric enzyme that catalyzes the third step in the common pathway for methionine and threonine biosynthesis; enzyme has nucleotide-binding, dimerization and catalytic regions. | 0.555 |
| GLR1 | TDH1 | YPL091W | YJL052W | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria. | 0.581 |
| GLR1 | TDH2 | YPL091W | YJR009C | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication. | 0.583 |
| GLR1 | TDH3 | YPL091W | YGR192C | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bacteria; binds AU-rich RNA. | 0.604 |
| GLR1 | ZWF1 | YPL091W | YNL241C | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | Glucose-6-phosphate dehydrogenase (G6PD); catalyzes the first step of the pentose phosphate pathway; involved in adapting to oxidative stress; protein abundance increases in response to DNA replication stress; homolog of human G6PD which is deficient in patients with hemolytic anemia; human G6PD can complement yeast zwf1 null mutant. | 0.890 |
| GND1 | GLR1 | YHR183W | YPL091W | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | 0.950 |
| GND1 | GND2 | YHR183W | YGR256W | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; GND2 has a paralog, GND1, that arose from the whole genome duplication. | 0.985 |
| GND1 | TDH1 | YHR183W | YJL052W | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria. | 0.812 |
| GND1 | TDH2 | YHR183W | YJR009C | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication. | 0.820 |
| GND1 | TDH3 | YHR183W | YGR192C | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bacteria; binds AU-rich RNA. | 0.780 |
| GND1 | ZWF1 | YHR183W | YNL241C | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. | Glucose-6-phosphate dehydrogenase (G6PD); catalyzes the first step of the pentose phosphate pathway; involved in adapting to oxidative stress; protein abundance increases in response to DNA replication stress; homolog of human G6PD which is deficient in patients with hemolytic anemia; human G6PD can complement yeast zwf1 null mutant. | 0.999 |
| GND2 | GLR1 | YGR256W | YPL091W | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; GND2 has a paralog, GND1, that arose from the whole genome duplication. | Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. | 0.905 |
| GND2 | GND1 | YGR256W | YHR183W | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; GND2 has a paralog, GND1, that arose from the whole genome duplication. | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. | 0.985 |
| GND2 | TDH1 | YGR256W | YJL052W | 6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; GND2 has a paralog, GND1, that arose from the whole genome duplication. | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria. | 0.780 |