| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| ARO10 | ILV2 | YDR380W | YMR108W | Transaminated amino acid decarboxylase; Phenylpyruvate decarboxylase; catalyzes decarboxylation of phenylpyruvate to phenylacetaldehyde, which is the first specific step in the Ehrlich pathway; involved in protein N-terminal Met and Ala catabolism. | Acetolactate synthase catalytic subunit, mitochondrial; Acetolactate synthase; catalyses the first common step in isoleucine and valine biosynthesis and is the target of several classes of inhibitors, localizes to the mitochondria; expression of the gene is under general amino acid control; Belongs to the TPP enzyme family. | 0.423 |
| HST1 | HST2 | YOL068C | YPL015C | NAD-dependent protein deacetylase HST1; NAD(+)-dependent histone deacetylase; essential subunit of the Sum1p/Rfm1p/Hst1p complex required for ORC-dependent silencing and meiotic repression; non-essential subunit of the Set3C deacetylase complex; involved in telomere maintenance; HST1 has a paralog, SIR2, that arose from the whole genome duplication. | Cytoplasmic NAD(+)-dependent protein deacetylase; deacetylation targets are primarily cytoplasmic proteins; member of the silencing information regulator 2 (Sir2) family of NAD(+)-dependent protein deacetylases; modulates nucleolar (rDNA) and telomeric silencing; possesses NAD(+)-dependent histone deacetylase activity in vitro; contains a nuclear export signal (NES); function regulated by its nuclear export; Belongs to the sirtuin family. Class I subfamily. | 0.554 |
| HST1 | SIR2 | YOL068C | YDL042C | NAD-dependent protein deacetylase HST1; NAD(+)-dependent histone deacetylase; essential subunit of the Sum1p/Rfm1p/Hst1p complex required for ORC-dependent silencing and meiotic repression; non-essential subunit of the Set3C deacetylase complex; involved in telomere maintenance; HST1 has a paralog, SIR2, that arose from the whole genome duplication. | Conserved NAD+ dependent histone deacetylase of the Sirtuin family; deacetylation targets are primarily nuclear proteins; required for telomere hypercluster formation in quiescent yeast cells; involved in regulation of lifespan; plays roles in silencing at HML, HMR, telomeres, and rDNA; negatively regulates initiation of DNA replication; functions as regulator of autophagy like mammalian homolog SIRT1, and also of mitophagy. | 0.844 |
| HST2 | HST1 | YPL015C | YOL068C | Cytoplasmic NAD(+)-dependent protein deacetylase; deacetylation targets are primarily cytoplasmic proteins; member of the silencing information regulator 2 (Sir2) family of NAD(+)-dependent protein deacetylases; modulates nucleolar (rDNA) and telomeric silencing; possesses NAD(+)-dependent histone deacetylase activity in vitro; contains a nuclear export signal (NES); function regulated by its nuclear export; Belongs to the sirtuin family. Class I subfamily. | NAD-dependent protein deacetylase HST1; NAD(+)-dependent histone deacetylase; essential subunit of the Sum1p/Rfm1p/Hst1p complex required for ORC-dependent silencing and meiotic repression; non-essential subunit of the Set3C deacetylase complex; involved in telomere maintenance; HST1 has a paralog, SIR2, that arose from the whole genome duplication. | 0.554 |
| HST2 | HST3 | YPL015C | YOR025W | Cytoplasmic NAD(+)-dependent protein deacetylase; deacetylation targets are primarily cytoplasmic proteins; member of the silencing information regulator 2 (Sir2) family of NAD(+)-dependent protein deacetylases; modulates nucleolar (rDNA) and telomeric silencing; possesses NAD(+)-dependent histone deacetylase activity in vitro; contains a nuclear export signal (NES); function regulated by its nuclear export; Belongs to the sirtuin family. Class I subfamily. | NAD-dependent histone deacetylase HST3; Member of the Sir2 family of NAD(+)-dependent protein deacetylases; involved along with Hst4p in telomeric silencing, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism. | 0.643 |
| HST2 | HST4 | YPL015C | YDR191W | Cytoplasmic NAD(+)-dependent protein deacetylase; deacetylation targets are primarily cytoplasmic proteins; member of the silencing information regulator 2 (Sir2) family of NAD(+)-dependent protein deacetylases; modulates nucleolar (rDNA) and telomeric silencing; possesses NAD(+)-dependent histone deacetylase activity in vitro; contains a nuclear export signal (NES); function regulated by its nuclear export; Belongs to the sirtuin family. Class I subfamily. | NAD-dependent histone deacetylase HST4; NAD(+)-dependent protein deacetylase; deacetylation targets are primarily mitochondrial proteins; involved along with Hst3p in silencing at telomeres, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism; accumulates in mitochondria in response to biotin starvation and may link biotin metabolism with energy homeostasis; member of the Sir2 family and may be the functional equivalent of human SIRT3. | 0.648 |
| HST2 | SIR2 | YPL015C | YDL042C | Cytoplasmic NAD(+)-dependent protein deacetylase; deacetylation targets are primarily cytoplasmic proteins; member of the silencing information regulator 2 (Sir2) family of NAD(+)-dependent protein deacetylases; modulates nucleolar (rDNA) and telomeric silencing; possesses NAD(+)-dependent histone deacetylase activity in vitro; contains a nuclear export signal (NES); function regulated by its nuclear export; Belongs to the sirtuin family. Class I subfamily. | Conserved NAD+ dependent histone deacetylase of the Sirtuin family; deacetylation targets are primarily nuclear proteins; required for telomere hypercluster formation in quiescent yeast cells; involved in regulation of lifespan; plays roles in silencing at HML, HMR, telomeres, and rDNA; negatively regulates initiation of DNA replication; functions as regulator of autophagy like mammalian homolog SIRT1, and also of mitophagy. | 0.634 |
| HST3 | HST2 | YOR025W | YPL015C | NAD-dependent histone deacetylase HST3; Member of the Sir2 family of NAD(+)-dependent protein deacetylases; involved along with Hst4p in telomeric silencing, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism. | Cytoplasmic NAD(+)-dependent protein deacetylase; deacetylation targets are primarily cytoplasmic proteins; member of the silencing information regulator 2 (Sir2) family of NAD(+)-dependent protein deacetylases; modulates nucleolar (rDNA) and telomeric silencing; possesses NAD(+)-dependent histone deacetylase activity in vitro; contains a nuclear export signal (NES); function regulated by its nuclear export; Belongs to the sirtuin family. Class I subfamily. | 0.643 |
| HST3 | HST4 | YOR025W | YDR191W | NAD-dependent histone deacetylase HST3; Member of the Sir2 family of NAD(+)-dependent protein deacetylases; involved along with Hst4p in telomeric silencing, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism. | NAD-dependent histone deacetylase HST4; NAD(+)-dependent protein deacetylase; deacetylation targets are primarily mitochondrial proteins; involved along with Hst3p in silencing at telomeres, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism; accumulates in mitochondria in response to biotin starvation and may link biotin metabolism with energy homeostasis; member of the Sir2 family and may be the functional equivalent of human SIRT3. | 0.920 |
| HST3 | SIR2 | YOR025W | YDL042C | NAD-dependent histone deacetylase HST3; Member of the Sir2 family of NAD(+)-dependent protein deacetylases; involved along with Hst4p in telomeric silencing, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism. | Conserved NAD+ dependent histone deacetylase of the Sirtuin family; deacetylation targets are primarily nuclear proteins; required for telomere hypercluster formation in quiescent yeast cells; involved in regulation of lifespan; plays roles in silencing at HML, HMR, telomeres, and rDNA; negatively regulates initiation of DNA replication; functions as regulator of autophagy like mammalian homolog SIRT1, and also of mitophagy. | 0.563 |
| HST4 | HST2 | YDR191W | YPL015C | NAD-dependent histone deacetylase HST4; NAD(+)-dependent protein deacetylase; deacetylation targets are primarily mitochondrial proteins; involved along with Hst3p in silencing at telomeres, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism; accumulates in mitochondria in response to biotin starvation and may link biotin metabolism with energy homeostasis; member of the Sir2 family and may be the functional equivalent of human SIRT3. | Cytoplasmic NAD(+)-dependent protein deacetylase; deacetylation targets are primarily cytoplasmic proteins; member of the silencing information regulator 2 (Sir2) family of NAD(+)-dependent protein deacetylases; modulates nucleolar (rDNA) and telomeric silencing; possesses NAD(+)-dependent histone deacetylase activity in vitro; contains a nuclear export signal (NES); function regulated by its nuclear export; Belongs to the sirtuin family. Class I subfamily. | 0.648 |
| HST4 | HST3 | YDR191W | YOR025W | NAD-dependent histone deacetylase HST4; NAD(+)-dependent protein deacetylase; deacetylation targets are primarily mitochondrial proteins; involved along with Hst3p in silencing at telomeres, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism; accumulates in mitochondria in response to biotin starvation and may link biotin metabolism with energy homeostasis; member of the Sir2 family and may be the functional equivalent of human SIRT3. | NAD-dependent histone deacetylase HST3; Member of the Sir2 family of NAD(+)-dependent protein deacetylases; involved along with Hst4p in telomeric silencing, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism. | 0.920 |
| HST4 | SIR2 | YDR191W | YDL042C | NAD-dependent histone deacetylase HST4; NAD(+)-dependent protein deacetylase; deacetylation targets are primarily mitochondrial proteins; involved along with Hst3p in silencing at telomeres, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism; accumulates in mitochondria in response to biotin starvation and may link biotin metabolism with energy homeostasis; member of the Sir2 family and may be the functional equivalent of human SIRT3. | Conserved NAD+ dependent histone deacetylase of the Sirtuin family; deacetylation targets are primarily nuclear proteins; required for telomere hypercluster formation in quiescent yeast cells; involved in regulation of lifespan; plays roles in silencing at HML, HMR, telomeres, and rDNA; negatively regulates initiation of DNA replication; functions as regulator of autophagy like mammalian homolog SIRT1, and also of mitophagy. | 0.569 |
| ILV2 | ARO10 | YMR108W | YDR380W | Acetolactate synthase catalytic subunit, mitochondrial; Acetolactate synthase; catalyses the first common step in isoleucine and valine biosynthesis and is the target of several classes of inhibitors, localizes to the mitochondria; expression of the gene is under general amino acid control; Belongs to the TPP enzyme family. | Transaminated amino acid decarboxylase; Phenylpyruvate decarboxylase; catalyzes decarboxylation of phenylpyruvate to phenylacetaldehyde, which is the first specific step in the Ehrlich pathway; involved in protein N-terminal Met and Ala catabolism. | 0.423 |
| PDC1 | PDC5 | YLR044C | YLR134W | Major of three pyruvate decarboxylase isozymes; key enzyme in alcoholic fermentation; decarboxylates pyruvate to acetaldehyde; involved in amino acid catabolism; subject to glucose-, ethanol-, and autoregulation; activated by phosphorylation in response to glucose levels; N-terminally propionylated in vivo; Belongs to the TPP enzyme family. | Minor isoform of pyruvate decarboxylase; key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde, regulation is glucose- and ethanol-dependent, repressed by thiamine, involved in amino acid catabolism. | 0.999 |
| PDC1 | PDC6 | YLR044C | YGR087C | Major of three pyruvate decarboxylase isozymes; key enzyme in alcoholic fermentation; decarboxylates pyruvate to acetaldehyde; involved in amino acid catabolism; subject to glucose-, ethanol-, and autoregulation; activated by phosphorylation in response to glucose levels; N-terminally propionylated in vivo; Belongs to the TPP enzyme family. | Minor isoform of pyruvate decarboxylase; decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol-dependent, and is strongly induced during sulfur limitation; Belongs to the TPP enzyme family. | 0.999 |
| PDC1 | THI3 | YLR044C | YDL080C | Major of three pyruvate decarboxylase isozymes; key enzyme in alcoholic fermentation; decarboxylates pyruvate to acetaldehyde; involved in amino acid catabolism; subject to glucose-, ethanol-, and autoregulation; activated by phosphorylation in response to glucose levels; N-terminally propionylated in vivo; Belongs to the TPP enzyme family. | Thiamine metabolism regulatory protein THI3; Regulatory protein that binds Pdc2p and Thi2p transcription factors; activates thiamine biosynthesis transcription factors Pdc2p and Thi2p by binding to them, but releases and de-activates them upon binding to thiamine pyrophosphate (TPP), the end product of the pathway; has similarity to decarboxylases but enzymatic activity is not detected. | 0.905 |
| PDC5 | PDC1 | YLR134W | YLR044C | Minor isoform of pyruvate decarboxylase; key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde, regulation is glucose- and ethanol-dependent, repressed by thiamine, involved in amino acid catabolism. | Major of three pyruvate decarboxylase isozymes; key enzyme in alcoholic fermentation; decarboxylates pyruvate to acetaldehyde; involved in amino acid catabolism; subject to glucose-, ethanol-, and autoregulation; activated by phosphorylation in response to glucose levels; N-terminally propionylated in vivo; Belongs to the TPP enzyme family. | 0.999 |
| PDC5 | PDC6 | YLR134W | YGR087C | Minor isoform of pyruvate decarboxylase; key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde, regulation is glucose- and ethanol-dependent, repressed by thiamine, involved in amino acid catabolism. | Minor isoform of pyruvate decarboxylase; decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol-dependent, and is strongly induced during sulfur limitation; Belongs to the TPP enzyme family. | 0.999 |
| PDC5 | THI3 | YLR134W | YDL080C | Minor isoform of pyruvate decarboxylase; key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde, regulation is glucose- and ethanol-dependent, repressed by thiamine, involved in amino acid catabolism. | Thiamine metabolism regulatory protein THI3; Regulatory protein that binds Pdc2p and Thi2p transcription factors; activates thiamine biosynthesis transcription factors Pdc2p and Thi2p by binding to them, but releases and de-activates them upon binding to thiamine pyrophosphate (TPP), the end product of the pathway; has similarity to decarboxylases but enzymatic activity is not detected. | 0.905 |