STRINGSTRING
PMS1 PMS1 PKP2 PKP2 PKP1 PKP1 SLN1 SLN1 MLH2 MLH2 MLH1 MLH1 HSC82 HSC82 TOP2 TOP2 MLH3 MLH3 HSP82 HSP82
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PMS1ATP-binding protein required for mismatch repair; required for both mitosis and meiosis; functions as a heterodimer with Mlh1p; binds double- and single-stranded DNA via its N-terminal domain, similar to E. coli MutL. (873 aa)
PKP2Mitochondrial protein kinase; negatively regulates activity of the pyruvate dehydrogenase complex by phosphorylating the ser-133 residue of the Pda1p subunit; acts in concert with kinase Pkp1p and phosphatases Ptc5p and Ptc6p; relocalizes from mitochondrion to cytoplasm upon DNA replication stress. (491 aa)
PKP1Mitochondrial protein kinase; involved in negative regulation of pyruvate dehydrogenase complex activity by phosphorylating the ser-133 residue of the Pda1p subunit; acts in concert with kinase Pkp2p and phosphatases Ptc5p and Ptc6p. (394 aa)
SLN1Osmosensing histidine protein kinase SLN1; Transmembrane histidine phosphotransfer kinase and osmosensor; regulates MAP kinase cascade; transmembrane protein with an intracellular kinase domain that signals to Ypd1p and Ssk1p, thereby forming a phosphorelay system similar to bacterial two-component regulators. (1220 aa)
MLH2Protein involved in mismatch repair and meiotic recombination; only certain frameshift intermediates are mismatch repair substrates; forms a complex with Mlh1p. (695 aa)
MLH1Protein required for mismatch repair in mitosis and meiosis; also required for crossing over during meiosis; forms a complex with Pms1p and Msh2p-Msh3p during mismatch repair; human homolog is associated with hereditary non-polyposis colon cancer; Belongs to the DNA mismatch repair MutL/HexB family. (769 aa)
HSC82ATP-dependent molecular chaperone HSC82; Cytoplasmic chaperone of the Hsp90 family; plays a role in determining prion variants; redundant in function and nearly identical with Hsp82p, and together they are essential; expressed constitutively at 10-fold higher basal levels than HSP82 and induced 2-3 fold by heat shock; contains two acid-rich unstructured regions that promote the solubility of chaperone-substrate complexes; HSC82 has a paralog, HSP82, that arose from the whole genome duplication. (705 aa)
TOP2DNA topoisomerase 2; Topoisomerase II; relieves torsional strain in DNA by cleaving and re-sealing phosphodiester backbone of both positively and negatively supercoiled DNA; cleaves complementary strands; localizes to axial cores in meiosis; required for replication slow zone (RSZ) breakage following Mec1p inactivation; human homolog TOP2A implicated in cancers, and can complement yeast null mutant; Belongs to the type II topoisomerase family. (1428 aa)
MLH3Protein involved in DNA mismatch repair and meiotic recombination; involved in crossing-over during meiotic recombination; forms a complex with Mlh1p; mammalian homolog is implicated mammalian microsatellite instability; Belongs to the DNA mismatch repair MutL/HexB family. (715 aa)
HSP82ATP-dependent molecular chaperone HSP82; Hsp90 chaperone; redundant in function with Hsc82p; required for pheromone signaling, negative regulation of Hsf1p; docks with Tom70p for mitochondrial preprotein delivery; promotes telomerase DNA binding, nucleotide addition; protein abundance increases in response to DNA replication stress; contains two acid-rich unstructured regions that promote solubility of chaperone-substrate complexes; HSP82 has a paralog, HSC82, that arose from the whole genome duplication. (709 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (38%) [HD]