STRINGSTRING
GCV1 GCV1 ALT2 ALT2 AGX1 AGX1 ARO8 ARO8 UGA1 UGA1 ARO9 ARO9 BAT1 BAT1 HIS5 HIS5 BNA3 BNA3 BAT2 BAT2 GFA1 GFA1 AAT1 AAT1 AAT2 AAT2 ALT1 ALT1 CAR2 CAR2 YMR084W YMR084W BIO3 BIO3 ARG8 ARG8 SER1 SER1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GCV1T subunit of the mitochondrial glycine decarboxylase complex; glycine decarboxylase is required for the catabolism of glycine to 5,10-methylene-THF; expression is regulated by levels of levels of 5,10-methylene-THF in the cytoplasm. (400 aa)
ALT2Probable alanine aminotransferase; Catalytically inactive alanine transaminase; expression is repressed in the presence of alanine and repression is mediated by Nrg1p; ALT2 has a paralog, ALT1, that arose from the whole genome duplication; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. Alanine aminotransferase subfamily. (507 aa)
AGX1Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. (385 aa)
ARO8Aromatic/aminoadipate aminotransferase 1; Aromatic aminotransferase I; expression is regulated by general control of amino acid biosynthesis. (500 aa)
UGA14-aminobutyrate aminotransferase; Gamma-aminobutyrate (GABA) transaminase; also known as 4-aminobutyrate aminotransferase; involved in the 4-aminobutyrate and glutamate degradation pathways; required for normal oxidative stress tolerance and nitrogen utilization; protein abundance increases in response to DNA replication stress; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (471 aa)
ARO9Aromatic aminotransferase II; catalyzes the first step of tryptophan, phenylalanine, and tyrosine catabolism; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (513 aa)
BAT1Branched-chain-amino-acid aminotransferase, mitochondrial; Mitochondrial branched-chain amino acid (BCAA) aminotransferase; preferentially involved in BCAA biosynthesis; homolog of murine ECA39; highly expressed during logarithmic phase and repressed during stationary phase; BAT1 has a paralog, BAT2, that arose from the whole genome duplication; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (393 aa)
HIS5Histidinol-phosphate aminotransferase; catalyzes the seventh step in histidine biosynthesis; responsive to general control of amino acid biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts. (385 aa)
BNA3Probable kynurenine--oxoglutarate transaminase BNA3; Kynurenine aminotransferase; catalyzes formation of kynurenic acid from kynurenine; potential Cdc28p substrate. (444 aa)
BAT2Branched-chain-amino-acid aminotransferase, cytosolic; Cytosolic branched-chain amino acid (BCAA) aminotransferase; preferentially involved in BCAA catabolism; homolog of murine ECA39; highly expressed during stationary phase and repressed during logarithmic phase; BAT2 has a paralog, BAT1, that arose from the whole genome duplication; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (376 aa)
GFA1Glutamine--fructose-6-phosphate aminotransferase [isomerizing]; Glutamine-fructose-6-phosphate amidotransferase; catalyzes the formation of glucosamine-6-P and glutamate from fructose-6-P and glutamine in the first step of chitin biosynthesis; GFA1 has a paralogous region, comprising ORFs YMR084W-YMR085W, that arose from the whole genome duplication. (717 aa)
AAT1Mitochondrial aspartate aminotransferase; catalyzes the conversion of oxaloacetate to aspartate in aspartate and asparagine biosynthesis. (451 aa)
AAT2Aspartate aminotransferase, cytoplasmic; Cytosolic aspartate aminotransferase involved in nitrogen metabolism; localizes to peroxisomes in oleate-grown cells; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (418 aa)
ALT1Probable alanine aminotransferase, mitochondrial; Alanine transaminase (glutamic pyruvic transaminase); involved in alanine biosynthesis and catabolism; TOR1-independent role in determining chronological lifespan; expression is induced in the presence of alanine; repression is mediated by Nrg1p; ALT1 has a paralog, ALT2, that arose from the whole genome duplication; Alt2p is catalytically inactive; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. Alanine aminotransferase subfamily. (592 aa)
CAR2L-ornithine transaminase (OTAse); catalyzes the second step of arginine degradation, expression is dually-regulated by allophanate induction and a specific arginine induction process; not nitrogen catabolite repression sensitive; protein abundance increases in response to DNA replication stress; human homolog OAT complements yeast null mutant. (424 aa)
YMR084WPutative glutamine--fructose-6-phosphate aminotransferase [isomerizing]; Putative protein of unknown function; YMR084W and adjacent ORF YMR085W are merged in related strains, and together are paralogous to glutamine-fructose-6-phosphate amidotransferase GFA1. (262 aa)
BIO37,8-diamino-pelargonic acid aminotransferase (DAPA); catalyzes the second step in the biotin biosynthesis pathway; BIO3 is in a cluster of 3 genes (BIO3, BIO4, and BIO5) that mediate biotin synthesis; BIO3 and BIO4 were acquired by horizontal gene transfer (HGT) from bacteria; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. (480 aa)
ARG8Acetylornithine aminotransferase, mitochondrial; Acetylornithine aminotransferase; catalyzes the fourth step in the biosynthesis of the arginine precursor ornithine; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (423 aa)
SER13-phosphoserine aminotransferase; catalyzes the formation of phosphoserine from 3-phosphohydroxypyruvate, required for serine and glycine biosynthesis; regulated by the general control of amino acid biosynthesis mediated by Gcn4p; protein abundance increases in response to DNA replication stress; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (395 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (28%) [HD]