Your Input: | |||||
CDC28 | Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant. (298 aa) | ||||
CDC15 | Cell division control protein 15; Protein kinase of the Mitotic Exit Network; localized to the spindle pole bodies at late anaphase; promotes mitotic exit by directly switching on the kinase activity of Dbf2p; required for spindle disassembly after meiosis II; relocalizes to the cytoplasm upon DNA replication stress. (974 aa) | ||||
CDC27 | Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C); APC/C is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition. (758 aa) | ||||
GAL1 | Galactokinase; phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in the first step of galactose catabolism; expression regulated by Gal4p; human homolog GALK2 complements yeast null mutant; GAL1 has a paralog, GAL3, that arose from the whole genome duplication. (528 aa) | ||||
CKS1 | Cyclin-dependent protein kinase regulatory subunit and adaptor; interacts with Cdc28p (aka Cdk1p); required for G1/S and G2/M phase transitions and budding; mediates phosphorylation and degradation of Sic1p; modulates proteolysis of M-phase targets through interactions with the proteasome; role in transcriptional regulation, recruiting proteasomal subunits to target gene promoters; human homologs CKS1B and CKS2 can each complement yeast cks1 null mutant. (150 aa) | ||||
LEU2 | Beta-isopropylmalate dehydrogenase (IMDH); catalyzes the third step in the leucine biosynthesis pathway; can additionally catalyze the conversion of beta-ethylmalate into alpha-ketovalerate; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (364 aa) | ||||
MSH3 | Mismatch repair protein; forms dimers with Msh2p that mediate repair of insertion or deletion mutations and removal of nonhomologous DNA ends, contains a PCNA (Pol30p) binding motif required for genome stability; Belongs to the DNA mismatch repair MutS family. MSH3 subfamily. (1018 aa) | ||||
MPS1 | Serine/threonine-protein kinase MPS1; Dual-specificity kinase; autophosphorylation required for function; required for spindle pole body (SPB) duplication and spindle checkpoint function; contributes to bi-orientation by promoting formation of force-generating kinetochore-microtubule attachments in meiosis I; substrates include SPB proteins Spc42p, Spc110p, and Spc98p, mitotic exit network protein Mob1p, kinetochore protein Cnn1p, and checkpoint protein Mad1p; substrate of APCC(Cdh1); similar to human Mps1p. (764 aa) | ||||
POL3 | Catalytic subunit of DNA polymerase delta; required for chromosomal DNA replication during mitosis and meiosis, intragenic recombination, repair of double strand DNA breaks, and DNA replication during nucleotide excision repair (NER). (1097 aa) | ||||
CLB3 | G2/mitotic-specific cyclin-3; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; relative distribution to the nucleus increases upon DNA replication stress; CLB3 has a paralog, CLB4, that arose from the whole genome duplication. (427 aa) | ||||
TRP1 | Phosphoribosylanthranilate isomerase; catalyzes the third step in tryptophan biosynthesis; in 2004, the sequence of TRP1 from strain S228C was updated by changing the previously annotated internal STOP (TAA) to serine (TCA); enhances vegetative growth at low and high temperatures when used as an auxotrophic marker in strains such as W303. (224 aa) | ||||
PDS1 | Securin; inhibits anaphase by binding separin Esp1p; blocks cyclin destruction and mitotic exit, essential for meiotic progression and mitotic cell cycle arrest; localization is cell-cycle dependent and regulated by Cdc28p phosphorylation. (373 aa) | ||||
GLC7 | Serine/threonine-protein phosphatase PP1-2; Type 1 S/T protein phosphatase (PP1) catalytic subunit; involved in glycogen metabolism, sporulation and mitotic progression; interacts with multiple regulatory subunits; regulates actomyosin ring formation; subunit of CPF; recruited to mating projections by Afr1p interaction; regulates nucleocytoplasmic shuttling of Hxk2p; import into the nucleus is inhibited during spindle assembly checkpoint arrest; involved in dephosphorylating Rps6a/b and Bnr1p. (312 aa) | ||||
CDC14 | Tyrosine-protein phosphatase CDC14; Protein phosphatase required for mitotic exit; required for rDNA segregation, cytokinesis, meiosis I spindle disassembly, environmental stress response; held in nucleolus by Cdc55p in early meiosis, liberated by FEAR and Mitotic Exit Network in anaphase, enabling it to effect a decrease in CDK/B-cyclin activity and mitotic exit; sequestered in metaphase II, released upon entry into anaphase II; human homolog CDC14A can complement thermosensitivity of yeast cdc14-1 mutant. (551 aa) | ||||
CDC26 | Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C); which is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition; relocalizes to the cytosol in response to hypoxia; Belongs to the CDC26 family. (124 aa) | ||||
CDH1 | Activator of anaphase-promoting complex/cyclosome (APC/C); antagonist of the spindle assembly checkpoint; directs ubiquitination of cyclins resulting in mitotic exit; targets the APC/C to specific substrates including: Cdc20p, Ase1p, Cin8p, Fin1p and Clb5p; partially active in metaphase, and fully active in anaphase; cell-cycle regulated; Belongs to the WD repeat CDC20/Fizzy family. (566 aa) | ||||
CDC20 | Activator of anaphase-promoting complex/cyclosome (APC/C); APC/C is required for metaphase/anaphase transition; directs ubiquitination of mitotic cyclins, Pds1p, and other anaphase inhibitors; cell-cycle regulated; potential Cdc28p substrate; relative distribution to the nucleus increases upon DNA replication stress; Belongs to the WD repeat CDC20/Fizzy family. (610 aa) | ||||
CLB1 | G2/mitotic-specific cyclin-1; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB1 has a paralog, CLB2, that arose from the whole genome duplication. (471 aa) | ||||
CDC23 | Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C); APC/C is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition. (626 aa) | ||||
BAR1 | Barrierpepsin; Aspartyl protease; secreted into the periplasmic space of mating type a cell; helps cells find mating partners; cleaves and inactivates alpha factor allowing cells to recover from alpha-factor-induced cell cycle arrest; Belongs to the peptidase A1 family. (587 aa) | ||||
CDC16 | Subunit of the anaphase-promoting complex/cyclosome (APC/C); which is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition; required for sporulation; relocalizes to the cytosol in response to hypoxia. (840 aa) | ||||
SIC1 | Protein SIC1; Cyclin-dependent kinase inhibitor (CKI); inhibitor of Cdc28-Clb kinase complexes that controls G1/S phase transition, preventing premature S phase and ensuring genomic integrity; phosphorylated by Clb5/6-Cdk1 and Cln1/2-Cdk1 kinase which regulate timing of Sic1p degradation; phosphorylation targets Sic1p for SCF(CDC4)-dependent turnover; functional homolog of mammalian Kip1. (284 aa) | ||||
APC9 | Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C); APC/C is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition. (265 aa) | ||||
CLB4 | G2/mitotic-specific cyclin-4; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; CLB4 has a paralog, CLB3, that arose from the whole genome duplication. (460 aa) | ||||
CDC5 | Cell cycle serine/threonine-protein kinase CDC5/MSD2; Polo-like kinase; controls targeting and activation of Rho1p at cell division site via Rho1p guanine nucleotide exchange factors; regulates Spc72p; also functions in adaptation to DNA damage during meiosis; regulates the shape of the nucleus and expansion of the nuclear envelope during mitosis; similar to Xenopus Plx1 and S. pombe Plo1p; human homologs PLK1, PLK3 can each complement yeast cdc5 thermosensitive mutants; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. CDC5/Polo subfamily. (705 aa) | ||||
APC1 | Largest subunit of the Anaphase-Promoting Complex/Cyclosome; APC/C is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition; component of the platform domain of the APC/C, based on structural analysis; localizes to nuclear foci that become diffuse upon DNA replication stress; Belongs to the APC1 family. (1748 aa) | ||||
CLB2 | G2/mitotic-specific cyclin-2; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB2 has a paralog, CLB1, that arose from the whole genome duplication. (491 aa) | ||||
CLB5 | S-phase entry cyclin-5; B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1 phase; CLB5 has a paralog, CLB6, that arose from the whole genome duplication. (435 aa) |