STRINGSTRING
ARG4 ARG4 MLH1 MLH1 SGS1 SGS1 PMS1 PMS1 MSH2 MSH2 MLH3 MLH3 EXO1 EXO1 MSH6 MSH6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ARG4Argininosuccinate lyase; catalyzes the final step in the arginine biosynthesis pathway; Belongs to the lyase 1 family. Argininosuccinate lyase subfamily. (463 aa)
MLH1Protein required for mismatch repair in mitosis and meiosis; also required for crossing over during meiosis; forms a complex with Pms1p and Msh2p-Msh3p during mismatch repair; human homolog is associated with hereditary non-polyposis colon cancer; Belongs to the DNA mismatch repair MutL/HexB family. (769 aa)
SGS1ATP-dependent helicase SGS1; RecQ family nucleolar DNA helicase; role in genome integrity maintenance, chromosome synapsis, meiotic joint molecule/crossover formation; stimulates activity of Top3p; rapidly lost in response to rapamycin in Rrd1p-dependent manner; forms nuclear foci upon DNA replication stress; yeast SGS1 complements mutations in human homolog BLM implicated in Bloom syndrome; also similar to human WRN implicated in Werner syndrome; human BLM and WRN can each complement yeast null mutant; Belongs to the helicase family. RecQ subfamily. (1447 aa)
PMS1ATP-binding protein required for mismatch repair; required for both mitosis and meiosis; functions as a heterodimer with Mlh1p; binds double- and single-stranded DNA via its N-terminal domain, similar to E. coli MutL. (873 aa)
MSH2Protein that binds to DNA mismatches; forms heterodimers with Msh3p and Msh6p that bind to DNA mismatches to initiate the mismatch repair process; contains a Walker ATP-binding motif required for repair activity and involved in interstrand cross-link repair; Msh2p-Msh6p binds to and hydrolyzes ATP. (964 aa)
MLH3Protein involved in DNA mismatch repair and meiotic recombination; involved in crossing-over during meiotic recombination; forms a complex with Mlh1p; mammalian homolog is implicated mammalian microsatellite instability; Belongs to the DNA mismatch repair MutL/HexB family. (715 aa)
EXO1Exodeoxyribonuclease 1; 5'-3' exonuclease and flap-endonuclease; involved in recombination, double-strand break repair, MMS2 error-free branch of the post replication (PRR) pathway and DNA mismatch repair; role in telomere maintenance; member of the Rad2p nuclease family, with conserved N and I nuclease domains; relative distribution to the nucleus increases upon DNA replication stress; EXO1 has a paralog, DIN7, that arose from the whole genome duplication. (702 aa)
MSH6Protein required for mismatch repair in mitosis and meiosis; forms a complex with Msh2p to repair both single-base & insertion-deletion mispairs; also involved in interstrand cross-link repair; potentially phosphorylated by Cdc28p. (1242 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (24%) [HD]