node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ASP3-1 | ASP3-2 | YLR155C | YLR157C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-2 has a paralog, ASP3-4, that arose from a segmental duplication. | 0.888 |
ASP3-1 | ASP3-3 | YLR155C | YLR158C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-3 has a paralog, ASP3-1, that arose from a segmental duplication. | 0.888 |
ASP3-1 | ASP3-4 | YLR155C | YLR160C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-4 has a paralog, ASP3-2, that arose from a segmental duplication. | 0.888 |
ASP3-1 | GLN3 | YLR155C | YER040W | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. | Nitrogen regulatory protein GLN3; Transcriptional activator of genes regulated by nitrogen catabolite repression; localization and activity regulated by quality of nitrogen source and Ure2p. | 0.831 |
ASP3-1 | URE2 | YLR155C | YNL229C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. | Nitrogen catabolite repression transcriptional regulator; inhibits GLN3 transcription in good nitrogen source; role in sequestering Gln3p and Gat1p to the cytoplasm; has glutathione peroxidase activity and can mutate to acquire GST activity; self-assembly under limited nitrogen conditions creates [URE3] prion and releases catabolite repression. | 0.842 |
ASP3-2 | ASP3-1 | YLR157C | YLR155C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-2 has a paralog, ASP3-4, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. | 0.888 |
ASP3-2 | ASP3-3 | YLR157C | YLR158C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-2 has a paralog, ASP3-4, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-3 has a paralog, ASP3-1, that arose from a segmental duplication. | 0.888 |
ASP3-2 | ASP3-4 | YLR157C | YLR160C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-2 has a paralog, ASP3-4, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-4 has a paralog, ASP3-2, that arose from a segmental duplication. | 0.888 |
ASP3-3 | ASP3-1 | YLR158C | YLR155C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-3 has a paralog, ASP3-1, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. | 0.888 |
ASP3-3 | ASP3-2 | YLR158C | YLR157C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-3 has a paralog, ASP3-1, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-2 has a paralog, ASP3-4, that arose from a segmental duplication. | 0.888 |
ASP3-3 | ASP3-4 | YLR158C | YLR160C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-3 has a paralog, ASP3-1, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-4 has a paralog, ASP3-2, that arose from a segmental duplication. | 0.888 |
ASP3-4 | ASP3-1 | YLR160C | YLR155C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-4 has a paralog, ASP3-2, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-1 has a paralog, ASP3-3, that arose from a segmental duplication. | 0.888 |
ASP3-4 | ASP3-2 | YLR160C | YLR157C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-4 has a paralog, ASP3-2, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-2 has a paralog, ASP3-4, that arose from a segmental duplication. | 0.888 |
ASP3-4 | ASP3-3 | YLR160C | YLR158C | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-4 has a paralog, ASP3-2, that arose from a segmental duplication. | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of ASP3; ASP3-3 has a paralog, ASP3-1, that arose from a segmental duplication. | 0.888 |
DAL80 | GAT1 | YKR034W | YFL021W | Nitrogen regulatory protein DAL80; Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p; member of the GATA-binding family, forms homodimers and heterodimers with Gzf3p; DAL80 has a paralog, GZF3, that arose from the whole genome duplication. | Transcriptional regulatory protein GAT1; Transcriptional activator of nitrogen catabolite repression genes; contains a GATA-1-type zinc finger DNA-binding motif; activity and localization regulated by nitrogen limitation and Ure2p; different translational starts produce two major and two minor isoforms that are differentially regulated and localized. | 0.716 |
DAL80 | GLN3 | YKR034W | YER040W | Nitrogen regulatory protein DAL80; Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p; member of the GATA-binding family, forms homodimers and heterodimers with Gzf3p; DAL80 has a paralog, GZF3, that arose from the whole genome duplication. | Nitrogen regulatory protein GLN3; Transcriptional activator of genes regulated by nitrogen catabolite repression; localization and activity regulated by quality of nitrogen source and Ure2p. | 0.810 |
DAL80 | GZF3 | YKR034W | YJL110C | Nitrogen regulatory protein DAL80; Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p; member of the GATA-binding family, forms homodimers and heterodimers with Gzf3p; DAL80 has a paralog, GZF3, that arose from the whole genome duplication. | GATA zinc finger protein; negatively regulates nitrogen catabolic gene expression by competing with Gat1p for GATA site binding; function requires a repressive carbon source; dimerizes with Dal80p and binds to Tor1p; GZF3 has a paralog, DAL80, that arose from the whole genome duplication. | 0.803 |
DAL80 | URE2 | YKR034W | YNL229C | Nitrogen regulatory protein DAL80; Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p; member of the GATA-binding family, forms homodimers and heterodimers with Gzf3p; DAL80 has a paralog, GZF3, that arose from the whole genome duplication. | Nitrogen catabolite repression transcriptional regulator; inhibits GLN3 transcription in good nitrogen source; role in sequestering Gln3p and Gat1p to the cytoplasm; has glutathione peroxidase activity and can mutate to acquire GST activity; self-assembly under limited nitrogen conditions creates [URE3] prion and releases catabolite repression. | 0.943 |
GAT1 | DAL80 | YFL021W | YKR034W | Transcriptional regulatory protein GAT1; Transcriptional activator of nitrogen catabolite repression genes; contains a GATA-1-type zinc finger DNA-binding motif; activity and localization regulated by nitrogen limitation and Ure2p; different translational starts produce two major and two minor isoforms that are differentially regulated and localized. | Nitrogen regulatory protein DAL80; Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p; member of the GATA-binding family, forms homodimers and heterodimers with Gzf3p; DAL80 has a paralog, GZF3, that arose from the whole genome duplication. | 0.716 |
GAT1 | GLN3 | YFL021W | YER040W | Transcriptional regulatory protein GAT1; Transcriptional activator of nitrogen catabolite repression genes; contains a GATA-1-type zinc finger DNA-binding motif; activity and localization regulated by nitrogen limitation and Ure2p; different translational starts produce two major and two minor isoforms that are differentially regulated and localized. | Nitrogen regulatory protein GLN3; Transcriptional activator of genes regulated by nitrogen catabolite repression; localization and activity regulated by quality of nitrogen source and Ure2p. | 0.949 |