STRINGSTRING
CBF1 CBF1 SWE1 SWE1 CLN3 CLN3 MEC1 MEC1 CDC28 CDC28 CDC53 CDC53 CDC34 CDC34 MET32 MET32 ZIP1 ZIP1 SKP1 SKP1 CDC4 CDC4 ACT1 ACT1 CUL3 CUL3 MET30 MET30 MET28 MET28 GSH1 GSH1 CLB5 CLB5 CLN2 CLN2 RAD53 RAD53 MET31 MET31 MET4 MET4 CLN1 CLN1 SIC1 SIC1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CBF1Centromere-binding protein 1; Basic helix-loop-helix (bHLH) protein; forms homodimer to bind E-box consensus sequence CACGTG present at MET gene promoters and centromere DNA element I (CDEI); affects nucleosome positioning at this motif; associates with other transcription factors such as Met4p and Isw1p to mediate transcriptional activation or repression; associates with kinetochore proteins, required for chromosome segregation; protein abundance increases in response to DNA replication stress. (351 aa)
SWE1Mitosis inhibitor protein kinase SWE1; Protein kinase that regulates the G2/M transition; negative regulator of the Cdc28p kinase; morphogenesis checkpoint kinase; positive regulator of sphingolipid biosynthesis via Orm2p; phosphorylates a tyrosine residue in the N-terminus of Hsp90 in a cell-cycle associated manner, thus modulating the ability of Hsp90 to chaperone a selected clientele; localizes to the nucleus and to the daughter side of the mother-bud neck; homolog of S. pombe Wee1p; potential Cdc28p substrate. (819 aa)
CLN3G1/S-specific cyclin CLN3; G1 cyclin involved in cell cycle progression; activates Cdc28p kinase to promote G1 to S phase transition; plays a role in regulating transcription of other G1 cyclins, CLN1 and CLN2; regulated by phosphorylation and proteolysis; acetyl-CoA induces CLN3 transcription in response to nutrient repletion to promote cell-cycle entry; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (580 aa)
MEC1Serine/threonine-protein kinase MEC1; Genome integrity checkpoint protein and PI kinase superfamily member; Mec1p and Dun1p function in same pathway to regulate dNTP pools and telomere length; signal transducer required for cell cycle arrest and transcriptional responses to damaged or unreplicated DNA; facilitates replication fork progression and regulates P-body formation under replication stress; promotes interhomolog recombination by phosphorylating Hop1p; associates with shortened, dysfunctional telomeres. (2368 aa)
CDC28Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant. (298 aa)
CDC53Cell division control protein 53; Cullin; structural protein of SCF complexes (which also contain Skp1p, Cdc34p, Hrt1p and an F-box protein) involved in ubiquitination; SCF promotes the G1-S transition by targeting G1 cyclins and the Cln-CDK inhibitor Sic1p for degradation; human homolog CUL1 can complement yeast cdc53 null mutant. (815 aa)
CDC34Ubiquitin-conjugating enzyme (E2); catalytic subunit of SCF ubiquitin-protein ligase complex (together with Skp1p, Rbx1p, Cdc53p, and an F-box protein) that regulates cell cycle progression by targeting key substrates for degradation; protein abundance increases in response to DNA replication stress; human CDC34 functionally complements the thermosensitivity of the cdc34-2 mutant. (295 aa)
MET32Transcriptional regulator MET32; Zinc-finger DNA-binding transcription factor; involved in transcriptional regulation of the methionine biosynthetic genes; targets strong transcriptional activator Met4p to promoters of sulfur metabolic genes; feedforward loop exists in the regulation of genes controlled by Met4p and Met32p; lack of such a loop for MET31 may account for the differential actions of Met32p and Met31p; MET32 has a paralog, MET31, that arose from the whole genome duplication. (191 aa)
ZIP1Transverse filament protein of the synaptonemal complex; required for normal levels of meiotic recombination and pairing between homologous chromosome during meiosis; required for meiotic recombination between non-allelc sites; potential Cdc28p substrate. (875 aa)
SKP1Evolutionarily conserved kinetochore protein; part of multiple protein complexes, including the SCF ubiquitin ligase complex, the CBF3 complex that binds centromeric DNA, and the RAVE complex that regulates assembly of the V-ATPase; protein abundance increases in response to DNA replication stress. (194 aa)
CDC4Cell division control protein 4; F-box protein required for both the G1/S and G2/M phase transitions; modular substrate specificity factor which associates with core SCF (Cdc53p, Skp1p and Hrt1p/Rbx1p) to form the SCFCdc4 complex; SCFCdc4 acts as a ubiquitin-protein ligase directing ubiquitination of cyclin-dependent kinase (CDK) phosphorylated substrates, such as: Sic1p, Far1p, Cdc6p, Clb6p, and Cln3p. (779 aa)
ACT1Actin; structural protein involved in cell polarization, endocytosis, and other cytoskeletal functions. (375 aa)
CUL3Cullin-3; Ubiquitin-protein ligase; forms a complex with Elc1p that polyubiquitylates monoubiquitylated RNA polymerase II to trigger its proteolysis; cullin family member with similarity to Cdc53p and human CUL3; Belongs to the cullin family. (744 aa)
MET30F-box protein containing five copies of the WD40 motif; controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes within the nucleus; dissociation of Met30p from SCF complex in response to cadmium stress is regulated by Cdc48p. (640 aa)
MET28bZIP transcriptional activator in the Cbf1p-Met4p-Met28p complex; participates in the regulation of sulfur metabolism. (187 aa)
GSH1Glutamate--cysteine ligase; Gamma glutamylcysteine synthetase; catalyzes the first step in glutathione (GSH) biosynthesis; expression induced by oxidants, cadmium, and mercury; protein abundance increases in response to DNA replication stress; Belongs to the glutamate--cysteine ligase type 3 family. (678 aa)
CLB5S-phase entry cyclin-5; B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1 phase; CLB5 has a paralog, CLB6, that arose from the whole genome duplication. (435 aa)
CLN2G1/S-specific cyclin CLN2; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN2 has a paralog, CLN1, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (545 aa)
RAD53Serine/threonine-protein kinase RAD53; DNA damage response protein kinase; required for cell-cycle arrest, regulation of copper genes in response to DNA damage; phosphorylates nuclear pores to counteract gene gating, preventing aberrant transitions at forks approaching transcribed genes; activates downstream kinase Dun1p; differentially senses mtDNA depletion, mitochondrial ROS; relocalizes to cytosol under hypoxia; human homolog CHEK2 implicated in breast cancer can complement yeast null mutant; Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. CHEK2 subfamily. (821 aa)
MET31Transcriptional regulator MET31; Zinc-finger DNA-binding transcription factor; targets strong transcriptional activator Met4p to promoters of sulfur metabolic genes; involved in transcriptional regulation of the methionine biosynthetic genes; feedforward loop controlling expression of MET32 and the lack of such a loop for MET31 may account for the differential actions of Met31p and Met32p; MET31 has a paralog, MET32, that arose from the whole genome duplication. (177 aa)
MET4Leucine-zipper transcriptional activator; responsible for regulation of sulfur amino acid pathway; requires different combinations of auxiliary factors Cbf1p, Met28p, Met31p and Met32p; feedforward loop exists in the regulation of genes controlled by Met4p and Met32p; can be ubiquitinated by ubiquitin ligase SCF-Met30p, is either degraded or maintained in an inactive state; regulates degradation of its own DNA-binding cofactors by targeting them to SCF-Met30p; Belongs to the bZIP family. (672 aa)
CLN1G1/S-specific cyclin CLN1; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN1 has a paralog, CLN2, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (546 aa)
SIC1Protein SIC1; Cyclin-dependent kinase inhibitor (CKI); inhibitor of Cdc28-Clb kinase complexes that controls G1/S phase transition, preventing premature S phase and ensuring genomic integrity; phosphorylated by Clb5/6-Cdk1 and Cln1/2-Cdk1 kinase which regulate timing of Sic1p degradation; phosphorylation targets Sic1p for SCF(CDC4)-dependent turnover; functional homolog of mammalian Kip1. (284 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (10%) [HD]