Your Input: | |||||
CBF1 | Centromere-binding protein 1; Basic helix-loop-helix (bHLH) protein; forms homodimer to bind E-box consensus sequence CACGTG present at MET gene promoters and centromere DNA element I (CDEI); affects nucleosome positioning at this motif; associates with other transcription factors such as Met4p and Isw1p to mediate transcriptional activation or repression; associates with kinetochore proteins, required for chromosome segregation; protein abundance increases in response to DNA replication stress. (351 aa) | ||||
SWE1 | Mitosis inhibitor protein kinase SWE1; Protein kinase that regulates the G2/M transition; negative regulator of the Cdc28p kinase; morphogenesis checkpoint kinase; positive regulator of sphingolipid biosynthesis via Orm2p; phosphorylates a tyrosine residue in the N-terminus of Hsp90 in a cell-cycle associated manner, thus modulating the ability of Hsp90 to chaperone a selected clientele; localizes to the nucleus and to the daughter side of the mother-bud neck; homolog of S. pombe Wee1p; potential Cdc28p substrate. (819 aa) | ||||
CLN3 | G1/S-specific cyclin CLN3; G1 cyclin involved in cell cycle progression; activates Cdc28p kinase to promote G1 to S phase transition; plays a role in regulating transcription of other G1 cyclins, CLN1 and CLN2; regulated by phosphorylation and proteolysis; acetyl-CoA induces CLN3 transcription in response to nutrient repletion to promote cell-cycle entry; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (580 aa) | ||||
MEC1 | Serine/threonine-protein kinase MEC1; Genome integrity checkpoint protein and PI kinase superfamily member; Mec1p and Dun1p function in same pathway to regulate dNTP pools and telomere length; signal transducer required for cell cycle arrest and transcriptional responses to damaged or unreplicated DNA; facilitates replication fork progression and regulates P-body formation under replication stress; promotes interhomolog recombination by phosphorylating Hop1p; associates with shortened, dysfunctional telomeres. (2368 aa) | ||||
CDC28 | Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant. (298 aa) | ||||
CDC53 | Cell division control protein 53; Cullin; structural protein of SCF complexes (which also contain Skp1p, Cdc34p, Hrt1p and an F-box protein) involved in ubiquitination; SCF promotes the G1-S transition by targeting G1 cyclins and the Cln-CDK inhibitor Sic1p for degradation; human homolog CUL1 can complement yeast cdc53 null mutant. (815 aa) | ||||
CDC34 | Ubiquitin-conjugating enzyme (E2); catalytic subunit of SCF ubiquitin-protein ligase complex (together with Skp1p, Rbx1p, Cdc53p, and an F-box protein) that regulates cell cycle progression by targeting key substrates for degradation; protein abundance increases in response to DNA replication stress; human CDC34 functionally complements the thermosensitivity of the cdc34-2 mutant. (295 aa) | ||||
MET32 | Transcriptional regulator MET32; Zinc-finger DNA-binding transcription factor; involved in transcriptional regulation of the methionine biosynthetic genes; targets strong transcriptional activator Met4p to promoters of sulfur metabolic genes; feedforward loop exists in the regulation of genes controlled by Met4p and Met32p; lack of such a loop for MET31 may account for the differential actions of Met32p and Met31p; MET32 has a paralog, MET31, that arose from the whole genome duplication. (191 aa) | ||||
ZIP1 | Transverse filament protein of the synaptonemal complex; required for normal levels of meiotic recombination and pairing between homologous chromosome during meiosis; required for meiotic recombination between non-allelc sites; potential Cdc28p substrate. (875 aa) | ||||
SKP1 | Evolutionarily conserved kinetochore protein; part of multiple protein complexes, including the SCF ubiquitin ligase complex, the CBF3 complex that binds centromeric DNA, and the RAVE complex that regulates assembly of the V-ATPase; protein abundance increases in response to DNA replication stress. (194 aa) | ||||
CDC4 | Cell division control protein 4; F-box protein required for both the G1/S and G2/M phase transitions; modular substrate specificity factor which associates with core SCF (Cdc53p, Skp1p and Hrt1p/Rbx1p) to form the SCFCdc4 complex; SCFCdc4 acts as a ubiquitin-protein ligase directing ubiquitination of cyclin-dependent kinase (CDK) phosphorylated substrates, such as: Sic1p, Far1p, Cdc6p, Clb6p, and Cln3p. (779 aa) | ||||
ACT1 | Actin; structural protein involved in cell polarization, endocytosis, and other cytoskeletal functions. (375 aa) | ||||
CUL3 | Cullin-3; Ubiquitin-protein ligase; forms a complex with Elc1p that polyubiquitylates monoubiquitylated RNA polymerase II to trigger its proteolysis; cullin family member with similarity to Cdc53p and human CUL3; Belongs to the cullin family. (744 aa) | ||||
MET30 | F-box protein containing five copies of the WD40 motif; controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes within the nucleus; dissociation of Met30p from SCF complex in response to cadmium stress is regulated by Cdc48p. (640 aa) | ||||
MET28 | bZIP transcriptional activator in the Cbf1p-Met4p-Met28p complex; participates in the regulation of sulfur metabolism. (187 aa) | ||||
GSH1 | Glutamate--cysteine ligase; Gamma glutamylcysteine synthetase; catalyzes the first step in glutathione (GSH) biosynthesis; expression induced by oxidants, cadmium, and mercury; protein abundance increases in response to DNA replication stress; Belongs to the glutamate--cysteine ligase type 3 family. (678 aa) | ||||
CLB5 | S-phase entry cyclin-5; B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1 phase; CLB5 has a paralog, CLB6, that arose from the whole genome duplication. (435 aa) | ||||
CLN2 | G1/S-specific cyclin CLN2; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN2 has a paralog, CLN1, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (545 aa) | ||||
RAD53 | Serine/threonine-protein kinase RAD53; DNA damage response protein kinase; required for cell-cycle arrest, regulation of copper genes in response to DNA damage; phosphorylates nuclear pores to counteract gene gating, preventing aberrant transitions at forks approaching transcribed genes; activates downstream kinase Dun1p; differentially senses mtDNA depletion, mitochondrial ROS; relocalizes to cytosol under hypoxia; human homolog CHEK2 implicated in breast cancer can complement yeast null mutant; Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. CHEK2 subfamily. (821 aa) | ||||
MET31 | Transcriptional regulator MET31; Zinc-finger DNA-binding transcription factor; targets strong transcriptional activator Met4p to promoters of sulfur metabolic genes; involved in transcriptional regulation of the methionine biosynthetic genes; feedforward loop controlling expression of MET32 and the lack of such a loop for MET31 may account for the differential actions of Met31p and Met32p; MET31 has a paralog, MET32, that arose from the whole genome duplication. (177 aa) | ||||
MET4 | Leucine-zipper transcriptional activator; responsible for regulation of sulfur amino acid pathway; requires different combinations of auxiliary factors Cbf1p, Met28p, Met31p and Met32p; feedforward loop exists in the regulation of genes controlled by Met4p and Met32p; can be ubiquitinated by ubiquitin ligase SCF-Met30p, is either degraded or maintained in an inactive state; regulates degradation of its own DNA-binding cofactors by targeting them to SCF-Met30p; Belongs to the bZIP family. (672 aa) | ||||
CLN1 | G1/S-specific cyclin CLN1; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN1 has a paralog, CLN2, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (546 aa) | ||||
SIC1 | Protein SIC1; Cyclin-dependent kinase inhibitor (CKI); inhibitor of Cdc28-Clb kinase complexes that controls G1/S phase transition, preventing premature S phase and ensuring genomic integrity; phosphorylated by Clb5/6-Cdk1 and Cln1/2-Cdk1 kinase which regulate timing of Sic1p degradation; phosphorylation targets Sic1p for SCF(CDC4)-dependent turnover; functional homolog of mammalian Kip1. (284 aa) |