STRINGSTRING
VTC4 VTC4 APS3 APS3 PHO90 PHO90 RAV1 RAV1 MIR1 MIR1 VMA5 VMA5 VPH2 VPH2 VPS34 VPS34 VAC14 VAC14 VPS33 VPS33 VMA6 VMA6 ERG6 ERG6 PHO84 PHO84 MRPL33 MRPL33 GCR2 GCR2 RIM21 RIM21 KRE1 KRE1 PHO91 PHO91 YOL019W YOL019W GPM3 GPM3 VAM3 VAM3 VPH1 VPH1 YOR283W YOR283W VMA4 VMA4 PYK2 PYK2 MRP51 MRP51 VMA11 VMA11 VTC3 VTC3 VMA13 VMA13 APL5 APL5 MRPL51 MRPL51 YPR099C YPR099C ECM33 ECM33 PHO3 PHO3 MRPL27 MRPL27 APM3 APM3 PHO87 PHO87 KCS1 KCS1 ARG82 ARG82 VMA3 VMA3 VMA8 VMA8 VTC1 VTC1 VTC2 VTC2 FAB1 FAB1 PHO4 PHO4 PFK1 PFK1 APL6 APL6 VMA10 VMA10 VMA22 VMA22 ECM14 ECM14
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
VTC4Vacuolar transporter chaperone 4; Vacuolar membrane polyphosphate polymerase; subunit of the vacuolar transporter chaperone (VTC) complex involved in synthesis and transfer of polyP to the vacuole; regulates membrane trafficking; role in non-autophagic vacuolar fusion; protein abundance increases in response to DNA replication stress. (721 aa)
APS3AP-3 complex subunit sigma; Small subunit of the clathrin-associated adaptor complex AP-3; involved in vacuolar protein sorting; related to the sigma subunit of the mammalian clathrin AP-3 complex; suppressor of loss of casein kinase 1 function; protein abundance increases in response to DNA replication stress. (194 aa)
PHO90Low-affinity phosphate transporter; acts upstream of Pho81p in regulation of the PHO pathway; deletion of pho84, pho87, pho89, pho90, and pho91 causes synthetic lethality; transcription independent of Pi and Pho4p activity; overexpression results in vigorous growth; PHO90 has a paralog, PHO87, that arose from the whole genome duplication; Belongs to the CitM (TC 2.A.11) transporter family. (881 aa)
RAV1Regulator of V-ATPase in vacuolar membrane protein 1; Subunit of RAVE complex (Rav1p, Rav2p, Skp1p); the RAVE complex promotes assembly of the V-ATPase holoenzyme; required for transport between the early and late endosome/PVC and for localization of TGN membrane proteins; potential Cdc28p substrate. (1357 aa)
MIR1Mitochondrial phosphate carrier; imports inorganic phosphate into mitochondria; functionally redundant with Pic2p but more abundant than Pic2p under normal conditions; phosphorylated; Belongs to the mitochondrial carrier (TC 2.A.29) family. (311 aa)
VMA5Subunit C of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; required for the V1 domain to assemble onto the vacuolar membrane; the V1 peripheral membrane domain of vacuolar H+-ATPase (V-ATPase) has eight subunits. (392 aa)
VPH2Integral membrane protein required for V-ATPase function; not an actual component of the vacuolar H+-ATPase (V-ATPase) complex; functions in the assembly of the V-ATPase; localized to the endoplasmic reticulum (ER); involved in methionine restriction extension of chronological lifespan in an autophagy-dependent manner. (215 aa)
VPS34Phosphatidylinositol (PI) 3-kinase that synthesizes PI-3-phosphate; forms membrane-associated signal transduction complex with Vps15p to regulate protein sorting; activated by the GTP-bound form of Gpa1p; a fraction is localized, with Vps15p, to nuclear pores at nucleus-vacuole junctions and may facilitate transcription elongation for genes positioned at the nuclear periphery; Belongs to the PI3/PI4-kinase family. (875 aa)
VAC14Vacuole morphology and inheritance protein 14; Enzyme regulator; involved in synthesis of phosphatidylinositol 3,5-bisphosphate, in control of trafficking of some proteins to the vacuole lumen via the MVB, and in maintenance of vacuole size and acidity; binds negative (Fig4p) and positive (Fab1p) regulators of PtdIns(3,5)P(2) to control endolysosome function; similar to mammalian Vac14p. (880 aa)
VPS33Vacuolar protein sorting-associated protein 33; ATP-binding protein that is a subunit of the HOPS and CORVET complexes; essential for protein sorting, vesicle docking, and fusion at the vacuole; binds to SNARE domains. (691 aa)
VMA6Subunit d of the V0 integral membrane domain of V-ATPase; part of the electrogenic proton pump found in the endomembrane system; required for V1 domain assembly on the vacuolar membrane; the V0 integral membrane domain of vacuolar H+-ATPase (V-ATPase) has five subunits. (345 aa)
ERG6Delta(24)-sterol C-methyltransferase; converts zymosterol to fecosterol in the ergosterol biosynthetic pathway by methylating position C-24; localized to lipid particles, the plasma membrane-associated endoplasmic reticulum, and the mitochondrial outer membrane; Belongs to the class I-like SAM-binding methyltransferase superfamily. Erg6/SMT family. (383 aa)
PHO84High-affinity inorganic phosphate (Pi) transporter; also low-affinity manganese transporter; regulated by Pho4p and Spt7p; mutation confers resistance to arsenate; exit from the ER during maturation requires Pho86p; cells overexpressing Pho84p accumulate heavy metals but do not develop symptoms of metal toxicity. (587 aa)
MRPL33Mitochondrial ribosomal protein of the large subunit. (86 aa)
GCR2Transcriptional activator of genes involved in glycolysis; interacts and functions with the DNA-binding protein Gcr1p. (534 aa)
RIM21pH-response regulator protein palH/RIM21; pH sensor molecule, component of the RIM101 pathway; has a role in cell wall construction and alkaline pH response; is glycosylated and phosphorylated; interacts with Dfg16p and Rim9p to form a pH-sensing complex; localization to the plasma membrane is dependent on Dfg16p and Rim9p; has similarity to A. nidulans PalH; Belongs to the palH/RIM21 family. (533 aa)
KRE1Cell wall glycoprotein involved in beta-glucan assembly; serves as a K1 killer toxin membrane receptor. (313 aa)
PHO91Low-affinity vacuolar phosphate transporter; exports phosphate from the vacuolar lumen to the cytosol; regulates phosphate and polyphosphate metabolism; acts upstream of Pho81p in regulation of the PHO pathway; localizes to sites of contact between the vacuole and mitochondria (vCLAMPs); deletion of pho84, pho87, pho89, pho90, and pho91 causes synthetic lethality; transcription independent of Pi and Pho4p activity; overexpression results in vigorous growth. (894 aa)
YOL019WUncharacterized membrane protein YOL019W; Protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cell periphery and vacuole; YOL019W has a paralog, DCV1, that arose from the whole genome duplication. (551 aa)
GPM3Homolog of Gpm1p phosphoglycerate mutase; converts 3-phosphoglycerate to 2-phosphoglycerate in glycolysis; may be non-functional; GPM3 has a paralog, GPM2, that arose from the whole genome duplication; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (303 aa)
VAM3Syntaxin-like vacuolar t-SNARE; functions with Vam7p in vacuolar protein trafficking; mediates docking/fusion of late transport intermediates with the vacuole; has an acidic di-leucine sorting signal and C-terminal transmembrane region. (283 aa)
VPH1Subunit a of vacuolar-ATPase V0 domain; one of two isoforms (Vph1p and Stv1p); Vph1p is located in V-ATPase complexes of the vacuole while Stv1p is located in V-ATPase complexes of the Golgi and endosomes; relative distribution to the vacuolar membrane decreases upon DNA replication stress; human homolog ATP6V0A4 implicated in renal tubular acidosis, can complement yeast null mutant. (840 aa)
YOR283WBroad-specificity phosphatase YOR283W; Phosphatase with a broad substrate specificity; has some similarity to GPM1/YKL152C, a phosphoglycerate mutase; YOR283W is not an essential gene; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (230 aa)
VMA4Subunit E of the V1 domain of the vacuolar H+-ATPase (V-ATPase); V-ATPase is an electrogenic proton pump found throughout the endomembrane system; V1 domain has eight subunits; required for the V1 domain to assemble onto the vacuolar membrane; protein abundance increases in response to DNA replication stress. (233 aa)
PYK2Pyruvate kinase; appears to be modulated by phosphorylation; transcription repressed by glucose, and Pyk2p may be active under low glycolytic flux; PYK2 has a paralog, CDC19, that arose from the whole genome duplication. (506 aa)
MRP51Mitochondrial ribosomal protein of the small subunit; MRP51 exhibits genetic interactions with mutations in the COX2 and COX3 mRNA 5'-untranslated leader sequences. (344 aa)
VMA11Vacuolar ATPase V0 domain subunit c'; involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen. (164 aa)
VTC3Regulatory subunit of the vacuolar transporter chaperone (VTC) complex; involved in membrane trafficking, vacuolar polyphosphate accumulation, microautophagy and non-autophagic vacuolar fusion; VTC3 has a paralog, VTC2, that arose from the whole genome duplication; Belongs to the VTC2/3 family. (835 aa)
VMA13Subunit H of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; serves as an activator or a structural stabilizer of the V-ATPase; the V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase) has eight subunits. (478 aa)
APL5Delta adaptin-like subunit of the clathrin associated protein complex; functions in transport of alkaline phosphatase to the vacuole via the alternate pathway; suppressor of loss of casein kinase 1 function; the clathrin associated protein complex is also known as AP-3. (932 aa)
MRPL51Mitochondrial ribosomal protein of the large subunit. (140 aa)
YPR099CPutative uncharacterized protein YPR099C; Dubious open reading frame; unlikely to encode a functional protein, based on available experimental and comparative sequence data; partially overlaps the verified gene MRPL51/YPR100W. (118 aa)
ECM33Cell wall protein ECM33; GPI-anchored protein of unknown function; possible role in apical bud growth; GPI-anchoring on the plasma membrane crucial to function; phosphorylated in mitochondria; similar to Sps2p; ECM33 has a paralog, PST1, that arose from the whole genome duplication. (429 aa)
PHO3Constitutively expressed acid phosphatase similar to Pho5p; brought to the cell surface by transport vesicles; hydrolyzes thiamin phosphates in the periplasmic space, increasing cellular thiamin uptake; expression is repressed by thiamin. (467 aa)
MRPL27Mitochondrial ribosomal protein of the large subunit; homolog of human Bcl-2 interacting protein BMRP. (146 aa)
APM3Mu3-like subunit of the clathrin associated protein complex (AP-3); functions in transport of alkaline phosphatase to the vacuole via the alternate pathway. (483 aa)
PHO87Low-affinity inorganic phosphate (Pi) transporter; acts upstream of Pho81p in regulation of the PHO pathway; expression is independent of Pi concentration and Pho4p activity; contains 12 membrane-spanning segments; PHO87 has a paralog, PHO90, that arose from the whole genome duplication. (923 aa)
KCS1Inositol hexakisphosphate and inositol heptakisphosphate kinase; generation of high energy inositol pyrophosphates by Kcs1p is required for many processes such as vacuolar biogenesis, stress response, RNA polymerase I-mediated rRNA transcription and telomere maintenance; inositol hexakisphosphate is also known as IP6; inositol heptakisphosphate is also known as IP7; Belongs to the inositol phosphokinase (IPK) family. (1050 aa)
ARG82Inositol polyphosphate multikinase (IPMK); sequentially phosphorylates Ins(1,4,5)P3 to form Ins(1,3,4,5,6)P5; also has diphosphoinositol polyphosphate synthase activity; regulates arginine-, phosphate-, and nitrogen-responsive genes. (355 aa)
VMA3V-type proton ATPase subunit c; Proteolipid subunit c of the V0 domain of vacuolar H(+)-ATPase; dicyclohexylcarbodiimide binding subunit; required for vacuolar acidification and important for copper and iron metal ion homeostasis; Belongs to the V-ATPase proteolipid subunit family. (160 aa)
VMA8Subunit D of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; plays a role in the coupling of proton transport and ATP hydrolysis; the V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase) has eight subunits. (256 aa)
VTC1Regulatory subunit of the vacuolar transporter chaperone (VTC) complex; VTC complex is involved in membrane trafficking, vacuolar polyphosphate accumulation, microautophagy and non-autophagic vacuolar fusion; also has mRNA binding activity; protein abundance increases in response to DNA replication stress. (129 aa)
VTC2Regulatory subunit of the vacuolar transporter chaperone (VTC) complex; involved in membrane trafficking, vacuolar polyphosphate accumulation, microautophagy and non-autophagic vacuolar fusion; VTC2 has a paralog, VTC3, that arose from the whole genome duplication; Belongs to the VTC2/3 family. (828 aa)
FAB11-phosphatidylinositol-3-phosphate 5-kinase; vacuolar membrane kinase that generates phosphatidylinositol (3,5)P2, which is involved in vacuolar sorting and homeostasis. (2278 aa)
PHO4Phosphate system positive regulatory protein PHO4; Basic helix-loop-helix (bHLH) transcription factor of the myc-family; activates transcription cooperatively with Pho2p in response to phosphate limitation; binding to 'CACGTG' motif is regulated by chromatin restriction, competitive binding of Cbf1p to the same DNA binding motif and cooperation with Pho2p; function is regulated by phosphorylation at multiple sites and by phosphate availability. (312 aa)
PFK1Alpha subunit of heterooctameric phosphofructokinase; involved in glycolysis, indispensable for anaerobic growth, activated by fructose-2,6-bisphosphate and AMP, mutation inhibits glucose induction of cell cycle-related genes; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Eukaryotic two domain clade 'E' sub-subfamily. (987 aa)
APL6Beta3-like subunit of the yeast AP-3 complex; functions in transport of alkaline phosphatase to the vacuole via the alternate pathway; exists in both cytosolic and peripherally associated membrane-bound pools. (809 aa)
VMA10Subunit G of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; involved in vacuolar acidification; the V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase) has eight subunits. (114 aa)
VMA22Protein that is required for vacuolar H+-ATPase (V-ATPase) function; peripheral membrane protein; not an actual component of the V-ATPase complex; functions in the assembly of the V-ATPase; localized to the yeast endoplasmic reticulum (ER). (181 aa)
ECM14Putative metallocarboxypeptidase ECM14; Putative metalloprotease with similarity to zinc carboxypeptidases; required for normal cell wall assembly; Belongs to the peptidase M14 family. (430 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (20%) [HD]