STRINGSTRING
GAT3 GAT3 PDR3 PDR3 TEC1 TEC1 THI2 THI2 RPN4 RPN4 MBP1 MBP1 UGA3 UGA3 SWI5 SWI5 MET32 MET32 GCN4 GCN4 GLN3 GLN3 SWI4 SWI4 PHO4 PHO4 PDR1 PDR1 HSF1 HSF1 SNT2 SNT2 STE12 STE12 SKN7 SKN7 YAP5 YAP5 ZAP1 ZAP1 CBF1 CBF1 ABF1 ABF1 SAM1 SAM1 SWI6 SWI6 SFP1 SFP1 LEU3 LEU3 YAP1 YAP1 MSN2 MSN2 MCM1 MCM1 RAP1 RAP1 STB1 STB1 NDD1 NDD1 RLM1 RLM1 FHL1 FHL1 ARR1 ARR1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GAT3Protein containing GATA family zinc finger motifs; involved in spore wall assembly; sequence similarity to GAT4, and the double mutant gat3 gat4 exhibits reduced dityrosine fluorescence relative to the single mutants. (141 aa)
PDR3Transcription factor PDR3; Transcriptional activator of the pleiotropic drug resistance network; regulates expression of ATP-binding cassette (ABC) transporters through binding to cis-acting PDRE sites (PDR responsive elements); has a role in response to drugs and organic solvents; post-translationally up-regulated in cells lacking functional mitochondrial genome; involved in diauxic shift; relative distribution to nucleus increases upon DNA replication stress; APCC(Cdh1) substrate. (976 aa)
TEC1Transcription factor targeting filamentation genes and Ty1 expression; Ste12p activation of most filamentation gene promoters depends on Tec1p and Tec1p transcriptional activity is dependent on its association with Ste12p; binds to TCS elements upstream of filamentation genes, which are regulated by Tec1p/Ste12p/Dig1p complex; competes with Dig2p for binding to Ste12p/Dig1p; positive regulator of chronological life span; TEA/ATTS DNA-binding domain family member; Belongs to the TEC1 family. (486 aa)
THI2Thiamine biosynthesis regulatory protein; Transcriptional activator of thiamine biosynthetic genes; interacts with regulatory factor Thi3p to control expression of thiamine biosynthetic genes with respect to thiamine availability; acts together with Pdc2p to respond to thiaminediphosphate demand, possibly as related to carbon source availability; zinc finger protein of the Zn(II)2Cys6 type. (450 aa)
RPN4Protein RPN4; Transcription factor that stimulates expression of proteasome genes; Rpn4p levels are in turn regulated by the 26S proteasome in a negative feedback control mechanism; RPN4 is transcriptionally regulated by various stress responses; relative distribution to the nucleus increases upon DNA replication stress. (531 aa)
MBP1Transcription factor; involved in regulation of cell cycle progression from G1 to S phase, forms a complex with Swi6p that binds to MluI cell cycle box regulatory element in promoters of DNA synthesis genes. (833 aa)
UGA3Transcriptional activator for GABA-dependent induction of GABA genes; binds to DNA elements found in the promoters of target genes and increases their expression in the presence of GABA (gamma-aminobutyrate); zinc finger transcription factor of the Zn(2)-Cys(6) binuclear cluster domain type; localized to the nucleus; examples of GABA genes include UGA1, UGA2, and UGA4. (528 aa)
SWI5Transcriptional factor SWI5; Transcription factor that recruits Mediator and Swi/Snf complexes; activates transcription of genes expressed at the M/G1 phase boundary and in G1 phase; required for expression of the HO gene controlling mating type switching; localization to nucleus occurs during G1 and appears to be regulated by phosphorylation by Cdc28p kinase; SWI5 has a paralog, ACE2, that arose from the whole genome duplication. (709 aa)
MET32Transcriptional regulator MET32; Zinc-finger DNA-binding transcription factor; involved in transcriptional regulation of the methionine biosynthetic genes; targets strong transcriptional activator Met4p to promoters of sulfur metabolic genes; feedforward loop exists in the regulation of genes controlled by Met4p and Met32p; lack of such a loop for MET31 may account for the differential actions of Met32p and Met31p; MET32 has a paralog, MET31, that arose from the whole genome duplication. (191 aa)
GCN4General control protein GCN4; bZIP transcriptional activator of amino acid biosynthetic genes; activator responds to amino acid starvation; expression is tightly regulated at both the transcriptional and translational levels; Belongs to the bZIP family. GCN4 subfamily. (281 aa)
GLN3Nitrogen regulatory protein GLN3; Transcriptional activator of genes regulated by nitrogen catabolite repression; localization and activity regulated by quality of nitrogen source and Ure2p. (730 aa)
SWI4Regulatory protein SWI4; DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair; Slt2p-independent regulator of cold growth; acetylation at two sites, K1016 and K1066, regulates interaction with Swi6p. (1093 aa)
PHO4Phosphate system positive regulatory protein PHO4; Basic helix-loop-helix (bHLH) transcription factor of the myc-family; activates transcription cooperatively with Pho2p in response to phosphate limitation; binding to 'CACGTG' motif is regulated by chromatin restriction, competitive binding of Cbf1p to the same DNA binding motif and cooperation with Pho2p; function is regulated by phosphorylation at multiple sites and by phosphate availability. (312 aa)
PDR1Transcription factor that regulates the pleiotropic drug response; zinc cluster protein that is a master regulator involved in recruiting other zinc cluster proteins to pleiotropic drug response elements (PDREs) to fine tune the regulation of multidrug resistance genes; relocalizes to the cytosol in response to hypoxia; PDR1 has a paralog, PDR3, that arose from the whole genome duplication. (1068 aa)
HSF1Trimeric heat shock transcription factor; activates multiple genes in response to highly diverse stresses; recognizes variable heat shock elements (HSEs) consisting of inverted NGAAN repeats; monitors translational status of cell through an RQC (Ribosomal Quality Control)-mediated translation-stress signal; involved in diauxic shift; posttranslationally regulated; human homolog HSF1 with linker region mutations can complement yeast hsf1 mutant; Belongs to the HSF family. (833 aa)
SNT2Subunit of Snt2C complex, RING finger ubiquitin ligase (E3); physically associates with Ecm5p and Rpd3p; along with Ecm5p, recruits Rpd3p to small number of promoters; colocalizes with Ecm5p, independently of Rpd3p, to promoters of stress response genes upon oxidative stress; involved in ubiquitination, degradation of excess histones; interacts with Ubc4p; role in regulating genes encoding amine transporters; relocalizes from nucleus to cytoplasm upon DNA replication stress. (1403 aa)
STE12Protein STE12; Transcription factor that is activated by a MAPK signaling cascade; activates genes involved in mating or pseudohyphal/invasive growth pathways; cooperates with Tec1p transcription factor to regulate genes specific for invasive growth. (688 aa)
SKN7Transcription factor SKN7; Nuclear response regulator and transcription factor; physically interacts with the Tup1-Cyc8 complex and recruits Tup1p to its targets; part of a branched two-component signaling system; required for optimal induction of heat-shock genes in response to oxidative stress; involved in osmoregulation; relocalizes to the cytosol in response to hypoxia; SKN7 has a paralog, HMS2, that arose from the whole genome duplication. (622 aa)
YAP5Basic leucine zipper (bZIP) iron-sensing transcription factor; involved in diauxic shift; YAP5 has a paralog, YAP7, that arose from the whole genome duplication. (245 aa)
ZAP1Zinc-responsive transcriptional regulator ZAP1; Zinc-regulated transcription factor; binds to zinc-responsive promoters to induce transcription of certain genes in presence of zinc, represses other genes in low zinc; regulates its own transcription; contains seven zinc-finger domains. (880 aa)
CBF1Centromere-binding protein 1; Basic helix-loop-helix (bHLH) protein; forms homodimer to bind E-box consensus sequence CACGTG present at MET gene promoters and centromere DNA element I (CDEI); affects nucleosome positioning at this motif; associates with other transcription factors such as Met4p and Isw1p to mediate transcriptional activation or repression; associates with kinetochore proteins, required for chromosome segregation; protein abundance increases in response to DNA replication stress. (351 aa)
ABF1ARS-binding factor 1; DNA binding protein with possible chromatin-reorganizing activity; involved in transcriptional activation, gene silencing, and DNA replication and repair; Belongs to the BAF1 family. (731 aa)
SAM1S-adenosylmethionine synthase 1; S-adenosylmethionine synthetase; catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine; SAM1 has a paralog, SAM2, that arose from the whole genome duplication. (382 aa)
SWI6Regulatory protein SWI6; Transcription cofactor; forms complexes with Swi4p and Mbp1p to regulate transcription at the G1/S transition; involved in meiotic gene expression; also binds Stb1p to regulate transcription at START; cell wall stress induces phosphorylation by Mpk1p, which regulates Swi6p localization; required for the unfolded protein response, independently of its known transcriptional coactivators. (803 aa)
SFP1Transcription factor SFP1; Regulates transcription of ribosomal protein and biogenesis genes; regulates response to nutrients and stress, G2/M transitions during mitotic cell cycle and DNA-damage response, and modulates cell size; regulated by TORC1 and Mrs6p; sequence of zinc finger, ChIP localization data, and protein-binding microarray (PBM) data, and computational analyses suggest it binds DNA directly at highly active RP genes and indirectly through Rap1p at others; can form the [ISP+] prion. (683 aa)
LEU3Regulatory protein LEU3; Zinc-knuckle transcription factor, repressor and activator; regulates genes involved in branched chain amino acid biosynthesis and ammonia assimilation; acts as a repressor in leucine-replete conditions and as an activator in the presence of alpha-isopropylmalate, an intermediate in leucine biosynthesis that accumulates during leucine starvation. (886 aa)
YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; activated by H2O2 through the multistep formation of disulfide bonds and transit from the cytoplasm to the nucleus; Yap1p is degraded in the nucleus after the oxidative stress has passed; mediates resistance to cadmium; relative distribution to the nucleus increases upon DNA replication stress; YAP1 has a paralog, CAD1, that arose from the whole genome duplication. (650 aa)
MSN2Zinc finger protein MSN2; Stress-responsive transcriptional activator; activated in stochastic pulses of nuclear localization in response to various stress conditions; binds DNA at stress response elements of responsive genes; relative distribution to nucleus increases upon DNA replication stress. (704 aa)
MCM1Transcription factor; involved in cell-type-specific transcription and pheromone response; plays a central role in the formation of both repressor and activator complexes; relocalizes to the cytosol in response to hypoxia. (286 aa)
RAP1DNA-binding protein RAP1; Essential DNA-binding transcription regulator that binds many loci; involved in transcription activation, repression, chromatin silencing, telomere length maintenance; relocalizes to cytosol under hypoxia; conserved protein with N-terminal BRCT domain, central region with homology to Myb DNA binding domain, and C-terminal Rap1-specific protein-interaction domain (RCT domain); recruits Sir complex to telomeric DNA; present in quiescent cell telomere hyperclusters. (827 aa)
STB1Protein with role in regulation of MBF-specific transcription at Start; phosphorylated by Cln-Cdc28p kinases in vitro; unphosphorylated form binds Swi6p, which is required for Stb1p function; expression is cell-cycle regulated; STB1 has a paralog, YOL131W, that arose from the whole genome duplication. (420 aa)
NDD1Nuclear division defective protein 1; Transcriptional activator essential for nuclear division; localized to the nucleus; essential component of the mechanism that activates the expression of a set of late-S-phase-specific genes; turnover is tightly regulated during cell cycle and in response to DNA damage. (554 aa)
RLM1MADS-box transcription factor; component of the protein kinase C-mediated MAP kinase pathway involved in the maintenance of cell integrity; phosphorylated and activated by the MAP-kinase Slt2p; RLM1 has a paralog, SMP1, that arose from the whole genome duplication. (676 aa)
FHL1Pre-rRNA-processing protein FHL1; Regulator of ribosomal protein (RP) transcription; has forkhead associated domain that binds phosphorylated proteins; recruits coactivator Ifh1p or corepressor Crf1p to RP gene promoters; also has forkhead DNA-binding domain though in vitro DNA binding assays give inconsistent results; computational analyses suggest it binds DNA directly at highly active RP genes and indirectly through Rap1p motifs at others; suppresses RNA pol III and splicing factor prp4 mutants. (936 aa)
ARR1AP-1-like transcription factor YAP8; Transcriptional activator of the basic leucine zipper (bZIP) family; required for transcription of genes involved in resistance to arsenic compounds; directly binds trivalent arsenic (As(III)) as does K. lactis ortholog, KIYAP8. (294 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (18%) [HD]