STRINGSTRING
PDC1 PDC1 FBA1 FBA1 RGT1 RGT1 GRR1 GRR1 CYC1 CYC1 TDH2 TDH2 RPE1 RPE1 OYE2 OYE2 DUR3 DUR3 MAL12 MAL12 ADR1 ADR1 GCN2 GCN2 SNF1 SNF1 GCN4 GCN4 URA3 URA3 TRP5 TRP5 MIG1 MIG1 RPB9 RPB9 GCN1 GCN1 MIG2 MIG2 PDC6 PDC6 XKS1 XKS1 PFK1 PFK1 MAL13 MAL13 MAL11 MAL11 GAL1 GAL1 GAL10 GAL10 GAL7 GAL7 LEU2 LEU2 ATG22 ATG22 PGK1 PGK1 ADH7 ADH7 THI3 THI3 RGT2 RGT2 SNF3 SNF3 NRG1 NRG1 TPI1 TPI1 DUR1,2 DUR1,2 INO2 INO2 TKL1 TKL1 GAL4 GAL4 OYE3 OYE3 GCR1 GCR1 SKS1 SKS1 CIP1 CIP1 HIS3 HIS3 HAP5 HAP5 GCR2 GCR2 ADH2 ADH2 TAL1 TAL1 PDC5 PDC5 XYL2 XYL2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PDC1Major of three pyruvate decarboxylase isozymes; key enzyme in alcoholic fermentation; decarboxylates pyruvate to acetaldehyde; involved in amino acid catabolism; subject to glucose-, ethanol-, and autoregulation; activated by phosphorylation in response to glucose levels; N-terminally propionylated in vivo; Belongs to the TPP enzyme family. (563 aa)
FBA1Fructose 1,6-bisphosphate aldolase; required for glycolysis and gluconeogenesis; catalyzes conversion of fructose 1,6 bisphosphate to glyceraldehyde-3-P and dihydroxyacetone-P; locates to mitochondrial outer surface upon oxidative stress; N-terminally propionylated in vivo; Belongs to the class II fructose-bisphosphate aldolase family. (359 aa)
RGT1Glucose-responsive transcription factor; regulates expression of several glucose transporter (HXT) genes in response to glucose; binds to promoters and acts both as a transcriptional activator and repressor; recruits Tup1p/Cyc8p to target gene promoters; RGT1 has a paralog, EDS1, that arose from the whole genome duplication; Belongs to the EDS1/RGT1 family. (1170 aa)
GRR1F-box protein component of an SCF ubiquitin-ligase complex; modular substrate specificity factor which associates with core SCF (Cdc53p, Skp1p and Hrt1p/Rbx1p) to form the SCF(Grr1) complex; SCF(Grr1) acts as a ubiquitin-protein ligase directing ubiquitination of substrates such as: Gic2p, Mks1p, Mth1p, Cln1p, Cln2p and Cln3p; involved in carbon catabolite repression, glucose-dependent divalent cation transport, glucose transport, morphogenesis, and sulfite detoxification. (1151 aa)
CYC1Cytochrome c, isoform 1; also known as iso-1-cytochrome c; electron carrier of mitochondrial intermembrane space that transfers electrons from ubiquinone-cytochrome c oxidoreductase to cytochrome c oxidase during cellular respiration; CYC1 has a paralog, CYC7, that arose from the whole genome duplication; human homolog CYC1 can complement yeast null mutant; mutations in human CYC1 cause insulin-responsive hyperglycemia. (109 aa)
TDH2Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication. (332 aa)
RPE1D-ribulose-5-phosphate 3-epimerase; catalyzes a reaction in the non-oxidative part of the pentose-phosphate pathway; mutants are sensitive to oxidative stress. (238 aa)
OYE2NADPH dehydrogenase 2; Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN); responsible for geraniol reduction into citronellol during fermentation; homologous to Oye3p with different ligand binding and catalytic properties; may be involved in sterol metabolism, oxidative stress response, and programmed cell death; protein abundance increases in response to DNA replication stress; Belongs to the NADH:flavin oxidoreductase/NADH oxidase family. (400 aa)
DUR3Plasma membrane transporter for both urea and polyamines; expression is highly sensitive to nitrogen catabolite repression and induced by allophanate, the last intermediate of the allantoin degradative pathway; Belongs to the sodium:solute symporter (SSF) (TC 2.A.21) family. (735 aa)
MAL12Alpha-glucosidase MAL12; Maltase (alpha-D-glucosidase); inducible protein involved in maltose catabolism; encoded in the MAL1 complex locus; hydrolyzes the disaccharides maltose, turanose, maltotriose, and sucrose; Belongs to the glycosyl hydrolase 13 family. (584 aa)
ADR1Regulatory protein ADR1; Carbon source-responsive zinc-finger transcription factor; required for transcription of the glucose-repressed gene ADH2, of peroxisomal protein genes, and of genes required for ethanol, glycerol, and fatty acid utilization. (1323 aa)
GCN2eIF-2-alpha kinase GCN2; Protein kinase; phosphorylates the alpha-subunit of translation initiation factor eIF2 (Sui2p) in response to starvation; activated by uncharged tRNAs and the Gcn1p-Gcn20p complex; contributes to DNA damage checkpoint control. (1659 aa)
SNF1AMP-activated S/T protein kinase; forms a complex with Snf4p and members of the Sip1p/Sip2p/Gal83p family; required for transcription of glucose-repressed genes, thermotolerance, sporulation, and peroxisome biogenesis; regulates nucleocytoplasmic shuttling of Hxk2p; regulates filamentous growth and acts as a non-canonical GEF, activating Arf3p during invasive growth; SUMOylation by Mms21p inhibits its function and targets Snf1p for destruction via the Slx5-Slx8 Ub ligase. (633 aa)
GCN4General control protein GCN4; bZIP transcriptional activator of amino acid biosynthetic genes; activator responds to amino acid starvation; expression is tightly regulated at both the transcriptional and translational levels; Belongs to the bZIP family. GCN4 subfamily. (281 aa)
URA3Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa)
TRP5Tryptophan synthase; catalyzes the last step of tryptophan biosynthesis; regulated by the general control system of amino acid biosynthesis; In the N-terminal section; belongs to the TrpA family. (707 aa)
MIG1Regulatory protein MIG1; Transcription factor involved in glucose repression; sequence specific DNA binding protein containing two Cys2His2 zinc finger motifs; regulated by the SNF1 kinase and the GLC7 phosphatase; regulates filamentous growth along with Mig2p in response to glucose depletion; activated in stochastic pulses of nuclear localization, shuttling between cytosol and nucleus depending on external glucose levels and its phosphorylation state; Belongs to the creA/MIG C2H2-type zinc-finger protein family. (504 aa)
RPB9RNA polymerase II subunit B12.6; contacts DNA; mutations affect transcription start site selection and fidelity of transcription. (122 aa)
GCN1eIF-2-alpha kinase activator GCN1; Positive regulator of the Gcn2p kinase activity; forms a complex with Gcn20p; proposed to stimulate Gcn2p activation by an uncharged tRNA; Belongs to the GCN1 family. (2672 aa)
MIG2Regulatory protein MIG2; Zinc finger transcriptional repressor; cooperates with Mig1p in glucose-induced gene repression; under low glucose conditions relocalizes to mitochondrion, where it interacts with Ups1p, antagonizes mitochondrial fission factor Dnm1p, indicative of a role in mitochondrial fusion or regulating morphology; regulates filamentous growth in response to glucose depletion; activated in stochastic pulses of nuclear localization in response to low glucose. (382 aa)
PDC6Minor isoform of pyruvate decarboxylase; decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol-dependent, and is strongly induced during sulfur limitation; Belongs to the TPP enzyme family. (563 aa)
XKS1Xylulokinase; converts D-xylulose and ATP to xylulose 5-phosphate and ADP; rate limiting step in fermentation of xylulose; required for xylose fermentation by recombinant S. cerevisiae strains. (600 aa)
PFK1Alpha subunit of heterooctameric phosphofructokinase; involved in glycolysis, indispensable for anaerobic growth, activated by fructose-2,6-bisphosphate and AMP, mutation inhibits glucose induction of cell cycle-related genes; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Eukaryotic two domain clade 'E' sub-subfamily. (987 aa)
MAL13Maltose fermentation regulatory protein MAL13; MAL-activator protein; part of complex locus MAL1; nonfunctional in genomic reference strain S288C; Belongs to the MAL13 family. (473 aa)
MAL11General alpha-glucoside permease; High-affinity maltose transporter (alpha-glucoside transporter); inducible; encoded in the MAL1 complex locus; broad substrate specificity that includes maltotriose; required for isomaltose utilization. (616 aa)
GAL1Galactokinase; phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in the first step of galactose catabolism; expression regulated by Gal4p; human homolog GALK2 complements yeast null mutant; GAL1 has a paralog, GAL3, that arose from the whole genome duplication. (528 aa)
GAL10Bifunctional protein GAL10; UDP-glucose-4-epimerase; catalyzes interconversion of UDP-galactose and UDP-D-glucose in galactose metabolism; also catalyzes conversion of alpha-D-glucose or alpha-D-galactose to their beta-anomers; human homolog GALE implicated in galactosemia, can complement yeast null mutant. (699 aa)
GAL7Galactose-1-phosphate uridyl transferase; synthesizes glucose-1-phosphate and UDP-galactose from UDP-D-glucose and alpha-D-galactose-1-phosphate in the second step of galactose catabolism; human homolog UGP2 can complement yeast null mutant. (366 aa)
LEU2Beta-isopropylmalate dehydrogenase (IMDH); catalyzes the third step in the leucine biosynthesis pathway; can additionally catalyze the conversion of beta-ethylmalate into alpha-ketovalerate; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (364 aa)
ATG22Autophagy-related protein 22; Vacuolar integral membrane protein required for efflux of amino acids; required for efflux of amino acids during autophagic body breakdown in the vacuole; null mutation causes a gradual loss of viability during starvation; Belongs to the ATG22 family. (528 aa)
PGK13-phosphoglycerate kinase; catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis. (416 aa)
ADH7NADPH-dependent medium chain alcohol dehydrogenase; has broad substrate specificity; member of the cinnamyl family of alcohol dehydrogenases; may be involved in fusel alcohol synthesis or in aldehyde tolerance. (361 aa)
THI3Thiamine metabolism regulatory protein THI3; Regulatory protein that binds Pdc2p and Thi2p transcription factors; activates thiamine biosynthesis transcription factors Pdc2p and Thi2p by binding to them, but releases and de-activates them upon binding to thiamine pyrophosphate (TPP), the end product of the pathway; has similarity to decarboxylases but enzymatic activity is not detected. (609 aa)
RGT2Plasma membrane high glucose sensor that regulates glucose transport; low affinity sesnor that contains 12 predicted transmembrane segments and a long C-terminal tail required for hexose transporter induction; phosphorylation of the tail by Yck1p/Yck2p facilitates binding to the HXT co-repressors, Mth1p and Std1p; RGT2 has a paralog, SNF3, that arose from the whole genome duplication; Belongs to the major facilitator superfamily. Sugar transporter (TC 2.A.1.1) family. (763 aa)
SNF3Plasma membrane low glucose sensor, regulates glucose transport; high affinity sensor that contains 12 predicted transmembrane segments and a long C-terminal tail required for induction of hexose transporters; also senses fructose and mannose; SNF3 has a paralog, RGT2, that arose from the whole genome duplication. (884 aa)
NRG1Transcriptional regulator NRG1; Transcriptional repressor; recruits the Cyc8p-Tup1p complex to promoters; mediates glucose repression and negatively regulates a variety of processes including filamentous growth and alkaline pH response; activated in stochastic pulses of nuclear localization in response to low glucose. (231 aa)
TPI1Triose phosphate isomerase, abundant glycolytic enzyme; mRNA half-life is regulated by iron availability; transcription is controlled by activators Reb1p, Gcr1p, and Rap1p through binding sites in the 5' non-coding region; inhibition of Tpi1p activity by PEP (phosphoenolpyruvate) stimulates redox metabolism in respiring cells; E104D mutation in human homolog TPI1 causes a rare autosomal disease; human TPI1 can complement yeast null mutant. (248 aa)
DUR1,2Allophanate hydrolase; Urea amidolyase; contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; protein abundance increases in response to DNA replication stress. (1835 aa)
INO2Protein INO2; Transcription factor; component of the heteromeric Ino2p/Ino4p basic helix-loop-helix transcription activator that binds inositol/choline-responsive elements (ICREs), required for derepression of phospholipid biosynthetic genes in response to inositol depletion; involved in diauxic shift. (304 aa)
TKL1Transketolase; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; TKL1 has a paralog, TKL2, that arose from the whole genome duplication. (680 aa)
GAL4Regulatory protein GAL4; DNA-binding transcription factor required for activating GAL genes; responds to galactose; repressed by Gal80p and activated by Gal3p. (881 aa)
OYE3NADPH dehydrogenase 3; Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN); homologous to Oye2p with different ligand binding and catalytic properties; has potential roles in oxidative stress response and programmed cell death. (400 aa)
GCR1Transcriptional activator of genes involved in glycolysis; DNA-binding protein that interacts and functions with the transcriptional activator Gcr2p. (785 aa)
SKS1Serine/threonine-protein kinase SKS1; Putative serine/threonine protein kinase; involved in the adaptation to low concentrations of glucose independent of the SNF3 regulated pathway; SKS1 has a paralog, VHS1, that arose from the whole genome duplication. (502 aa)
CIP1Uncharacterized protein YPL014W; Cyclin-dependent kinase inhibitor; interacts with and inhibits the Cdc28p/Cln2p, G1/S phase cyclin-dependent kinase complex but not S-phase, or M-phase complexes; overexpression blocks cells in G1 phase and stabilizes the Cdc28p inhibitor Sic1p, while disruption accelerates the G1/S phase transition; phosphorylated during S phase in a Cdc28p-dependent manner; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and to the nucleus. (381 aa)
HIS3Imidazoleglycerol-phosphate dehydratase; catalyzes the sixth step in histidine biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts; transcription is regulated by general amino acid control via Gcn4p. (220 aa)
HAP5Transcriptional activator HAP5; Subunit of the Hap2p/3p/4p/5p CCAAT-binding complex; complex is heme-activated and glucose repressed; complex is a transcriptional activator and global regulator of respiratory gene expression; required for assembly and DNA binding activity of the complex. (242 aa)
GCR2Transcriptional activator of genes involved in glycolysis; interacts and functions with the DNA-binding protein Gcr1p. (534 aa)
ADH2Glucose-repressible alcohol dehydrogenase II; catalyzes the conversion of ethanol to acetaldehyde; involved in the production of certain carboxylate esters; regulated by ADR1. (348 aa)
TAL1Transaldolase, enzyme in the non-oxidative pentose phosphate pathway; converts sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to erythrose 4-phosphate and fructose 6-phosphate; TAL1 has a paralog, NQM1, that arose from the whole genome duplication. (335 aa)
PDC5Minor isoform of pyruvate decarboxylase; key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde, regulation is glucose- and ethanol-dependent, repressed by thiamine, involved in amino acid catabolism. (563 aa)
XYL2D-xylulose reductase; Xylitol dehydrogenase; converts xylitol to D-xylulose; expression induced by xylose, even though this pentose sugar is not well utilized by S. cerevisiae; null mutant has cell wall defect. (356 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (10%) [HD]