Your Input: | |||||
CLN3 | G1/S-specific cyclin CLN3; G1 cyclin involved in cell cycle progression; activates Cdc28p kinase to promote G1 to S phase transition; plays a role in regulating transcription of other G1 cyclins, CLN1 and CLN2; regulated by phosphorylation and proteolysis; acetyl-CoA induces CLN3 transcription in response to nutrient repletion to promote cell-cycle entry; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (580 aa) | ||||
CDC15 | Cell division control protein 15; Protein kinase of the Mitotic Exit Network; localized to the spindle pole bodies at late anaphase; promotes mitotic exit by directly switching on the kinase activity of Dbf2p; required for spindle disassembly after meiosis II; relocalizes to the cytoplasm upon DNA replication stress. (974 aa) | ||||
CDC28 | Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant. (298 aa) | ||||
MBP1 | Transcription factor; involved in regulation of cell cycle progression from G1 to S phase, forms a complex with Swi6p that binds to MluI cell cycle box regulatory element in promoters of DNA synthesis genes. (833 aa) | ||||
CLB3 | G2/mitotic-specific cyclin-3; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; relative distribution to the nucleus increases upon DNA replication stress; CLB3 has a paralog, CLB4, that arose from the whole genome duplication. (427 aa) | ||||
PDS1 | Securin; inhibits anaphase by binding separin Esp1p; blocks cyclin destruction and mitotic exit, essential for meiotic progression and mitotic cell cycle arrest; localization is cell-cycle dependent and regulated by Cdc28p phosphorylation. (373 aa) | ||||
SWI4 | Regulatory protein SWI4; DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair; Slt2p-independent regulator of cold growth; acetylation at two sites, K1016 and K1066, regulates interaction with Swi6p. (1093 aa) | ||||
CDC14 | Tyrosine-protein phosphatase CDC14; Protein phosphatase required for mitotic exit; required for rDNA segregation, cytokinesis, meiosis I spindle disassembly, environmental stress response; held in nucleolus by Cdc55p in early meiosis, liberated by FEAR and Mitotic Exit Network in anaphase, enabling it to effect a decrease in CDK/B-cyclin activity and mitotic exit; sequestered in metaphase II, released upon entry into anaphase II; human homolog CDC14A can complement thermosensitivity of yeast cdc14-1 mutant. (551 aa) | ||||
CDC20 | Activator of anaphase-promoting complex/cyclosome (APC/C); APC/C is required for metaphase/anaphase transition; directs ubiquitination of mitotic cyclins, Pds1p, and other anaphase inhibitors; cell-cycle regulated; potential Cdc28p substrate; relative distribution to the nucleus increases upon DNA replication stress; Belongs to the WD repeat CDC20/Fizzy family. (610 aa) | ||||
CDC55 | Regulatory subunit B of protein phosphatase 2A (PP2A); Zds1p/2p-dependent localization to cytoplasm promotes mitotic entry; localization to nucleus prevents mitotic exit; required for correct nuclear division, chromosome segregation during achiasmate meiosis; maintains nucleolar sequestration of Cdc14p during early meiosis; limits formation of PP2A-Rts1p holocomplexes to ensure timely dissolution of sister chromosome cohesion; homolog of mammalian B55. (526 aa) | ||||
ESP1 | Separin; Separase, a caspase-like cysteine protease; promotes sister chromatid separation by mediating dissociation of the cohesin Scc1p from chromatin; inhibits protein phosphatase 2A-Cdc55p to promote mitotic exit; inhibited by Pds1p; relative distribution to the nucleus increases upon DNA replication stress. (1630 aa) | ||||
CLB1 | G2/mitotic-specific cyclin-1; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB1 has a paralog, CLB2, that arose from the whole genome duplication. (471 aa) | ||||
NET1 | Nucleolar protein NET1; Core subunit of the RENT complex; involved in nucleolar silencing and telophase exit; stimulates transcription by RNA polymerase I and regulates nucleolar structure; NET1 has a paralog, TOF2, that arose from the whole genome duplication; To yeast YKR010c. (1189 aa) | ||||
ASH1 | Transcriptional regulatory protein ASH1; Component of the Rpd3L histone deacetylase complex; zinc-finger inhibitor of HO transcription; mRNA is localized and translated in the distal tip of anaphase cells, resulting in accumulation of Ash1p in daughter cell nuclei and inhibition of HO expression; potential Cdc28p substrate. (588 aa) | ||||
SIC1 | Protein SIC1; Cyclin-dependent kinase inhibitor (CKI); inhibitor of Cdc28-Clb kinase complexes that controls G1/S phase transition, preventing premature S phase and ensuring genomic integrity; phosphorylated by Clb5/6-Cdk1 and Cln1/2-Cdk1 kinase which regulate timing of Sic1p degradation; phosphorylation targets Sic1p for SCF(CDC4)-dependent turnover; functional homolog of mammalian Kip1. (284 aa) | ||||
ACE2 | Metallothionein expression activator; Transcription factor required for septum destruction after cytokinesis; phosphorylation by Cbk1p blocks nuclear exit during M/G1 transition, causing localization to daughter cell nuclei, and also increases Ace2p activity; phosphorylation by Cdc28p and Pho85p prevents nuclear import during cell cycle phases other than cytokinesis; part of RAM network that regulates cellular polarity and morphogenesis; ACE2 has a paralog, SWI5, that arose from the whole genome duplication. (770 aa) | ||||
SWI6 | Regulatory protein SWI6; Transcription cofactor; forms complexes with Swi4p and Mbp1p to regulate transcription at the G1/S transition; involved in meiotic gene expression; also binds Stb1p to regulate transcription at START; cell wall stress induces phosphorylation by Mpk1p, which regulates Swi6p localization; required for the unfolded protein response, independently of its known transcriptional coactivators. (803 aa) | ||||
CLB4 | G2/mitotic-specific cyclin-4; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; CLB4 has a paralog, CLB3, that arose from the whole genome duplication. (460 aa) | ||||
TEM1 | GTP-binding protein of the Ras superfamily; involved in termination of M-phase; controls actomyosin and septin dynamics during cytokinesis. (245 aa) | ||||
CDC5 | Cell cycle serine/threonine-protein kinase CDC5/MSD2; Polo-like kinase; controls targeting and activation of Rho1p at cell division site via Rho1p guanine nucleotide exchange factors; regulates Spc72p; also functions in adaptation to DNA damage during meiosis; regulates the shape of the nucleus and expansion of the nuclear envelope during mitosis; similar to Xenopus Plx1 and S. pombe Plo1p; human homologs PLK1, PLK3 can each complement yeast cdc5 thermosensitive mutants; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. CDC5/Polo subfamily. (705 aa) | ||||
CLN1 | G1/S-specific cyclin CLN1; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN1 has a paralog, CLN2, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (546 aa) | ||||
NRM1 | Transcription factor NRM1; Transcriptional co-repressor of MBF-regulated gene expression; Nrm1p associates stably with promoters via MCB binding factor (MBF) to repress transcription upon exit from G1 phase. (249 aa) | ||||
WHI5 | G1-specific transcriptional repressor WHI5; Repressor of G1 transcription; binds to SCB binding factor (SBF) at SCB target promoters in early G1; dilution of Whi5p concentration during cell growth determines cell size; phosphorylation of Whi5p by the CDK, Cln3p/Cdc28p relieves repression and promoter binding by Whi5, and contributes to both the determination of critical cell size at START and cell fate; periodically expressed in G1; Belongs to the WHI5/NRM1 family. (295 aa) | ||||
CLB2 | G2/mitotic-specific cyclin-2; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB2 has a paralog, CLB1, that arose from the whole genome duplication. (491 aa) | ||||
CLB5 | S-phase entry cyclin-5; B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1 phase; CLB5 has a paralog, CLB6, that arose from the whole genome duplication. (435 aa) |