STRINGSTRING
COX2 COX2 ATP15 ATP15 ATP4 ATP4 CAM1 CAM1 PYK2 PYK2 NUP1 NUP1 STI1 STI1 PHO91 PHO91 SRP1 SRP1 PSE1 PSE1 ASC1 ASC1 NUP116 NUP116 TSA1 TSA1 KAP95 KAP95 SMD3 SMD3 HSP104 HSP104 TEF4 TEF4 FBA1 FBA1 ATP7 ATP7 ATP2 ATP2 CPA2 CPA2 TDH2 TDH2 PHO90 PHO90 TIF2 TIF2 URA2 URA2 TDH1 TDH1 ERG11 ERG11 YGR201C YGR201C TDH3 TDH3 NUP57 NUP57 NUP49 NUP49 NUP145 NUP145 MMS2 MMS2 ACT1 ACT1 SMT3 SMT3 EFT2 EFT2 ATP17 ATP17 CPR5 CPR5 ATP5 ATP5 CDC48 CDC48 PHO87 PHO87 PGK1 PGK1 CDC28 CDC28 ATP3 ATP3 ATP1 ATP1 CDC19 CDC19 SSA1 SSA1 ATP6 ATP6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
COX2Subunit II of cytochrome c oxidase (Complex IV); Complex IV is the terminal member of the mitochondrial inner membrane electron transport chain; one of three mitochondrially-encoded subunits. (251 aa)
ATP15Epsilon subunit of the F1 sector of mitochondrial F1F0 ATP synthase; which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; F1 translationally regulates ATP6 and ATP8 expression to achieve a balanced output of ATP synthase genes encoded in nucleus and mitochondria; phosphorylated; Belongs to the eukaryotic ATPase epsilon family. (62 aa)
ATP4Subunit b of the stator stalk of mitochondrial F1F0 ATP synthase; ATP synthase is a large, evolutionarily conserved enzyme complex required for ATP synthesis; contributes to the oligomerization of the complex, which in turn determines the shape of inner membrane cristae; phosphorylated; Belongs to the eukaryotic ATPase B chain family. (244 aa)
CAM1Elongation factor 1-gamma 1; One of two isoforms of the gamma subunit of eEF1B; stimulates the release of GDP from eEF1A (Tef1p/Tef2p) post association with the ribosomal complex with eEF1Balpha subunit; nuclear protein required for transcription of MXR1; binds the MXR1 promoter in the presence of other nuclear factors; binds calcium and phospholipids. (415 aa)
PYK2Pyruvate kinase; appears to be modulated by phosphorylation; transcription repressed by glucose, and Pyk2p may be active under low glycolytic flux; PYK2 has a paralog, CDC19, that arose from the whole genome duplication. (506 aa)
NUP1FG-nucleoporin component of central core of the nuclear pore complex; contributes directly to nucleocytoplasmic transport and maintenance of thenuclear pore complex (NPC) permeability barrier; possible karyopherin release factor that accelerates release of karyopherin-cargo complexes after transport across NPC; both NUP1 and NUP60 are homologous to human NUP153. (1076 aa)
STI1Heat shock protein STI1; Hsp90 cochaperone; regulates spatial organization of amyloid-like proteins in the cytosol, thereby buffering the proteotoxicity caused by amyloid-like proteins; interacts with the Ssa group of the cytosolic Hsp70 chaperones and activates Ssa1p ATPase activity; interacts with Hsp90 chaperones and inhibits their ATPase activity; homolog of mammalian Hop. (589 aa)
PHO91Low-affinity vacuolar phosphate transporter; exports phosphate from the vacuolar lumen to the cytosol; regulates phosphate and polyphosphate metabolism; acts upstream of Pho81p in regulation of the PHO pathway; localizes to sites of contact between the vacuole and mitochondria (vCLAMPs); deletion of pho84, pho87, pho89, pho90, and pho91 causes synthetic lethality; transcription independent of Pi and Pho4p activity; overexpression results in vigorous growth. (894 aa)
SRP1Importin subunit alpha; Karyopherin alpha homolog; forms a dimer with karyopherin beta Kap95p to mediate import of nuclear proteins, binds the nuclear localization signal of the substrate during import; involved in cotranslational protein degradation; binds ribosome-bound nascent polypeptides; Srp1p and Sts1p couple proteasomes to nascent polypeptides emerging from the ribosome for cotranslational degradation. (542 aa)
PSE1Importin subunit beta-3; Karyopherin/importin that interacts with the nuclear pore complex; acts as the nuclear import receptor for specific proteins, including Pdr1p, Yap1p, Ste12p, and Aft1p. (1089 aa)
ASC1G-protein beta subunit and guanine dissociation inhibitor for Gpa2p; ortholog of RACK1 that inhibits translation; core component of the small (40S) ribosomal subunit; required to prevent frameshifting at ribosomes stalled at repeated CGA codons; regulates P-body formation induced by replication stress; represses Gcn4p in the absence of amino acid starvation. (319 aa)
NUP116FG-nucleoporin component of central core of the nuclear pore complex; contributes directly to nucleocytoplasmic transport and maintenance of the nuclear pore complex (NPC) permeability barrier; forms a stable association with Nup82p, Gle2p and two other FG-nucleoporins (Nsp1p and Nup159p); NUP116 has a paralog, NUP100, that arose from the whole genome duplication. (1113 aa)
TSA1Peroxiredoxin TSA1; Thioredoxin peroxidase; acts as both ribosome-associated and free cytoplasmic antioxidant; self-associates to form high-molecular weight chaperone complex under oxidative stress; chaperone activity essential for growth in zinc deficiency; required for telomere length maintenance; binds and modulates Cdc19p activity; protein abundance increases, forms cytoplasmic foci during DNA replication stress; TSA1 has a paralog, TSA2, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. (196 aa)
KAP95Importin subunit beta-1; Karyopherin beta; forms a complex with Srp1p/Kap60p; interacts with nucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates PC biosynthesis; GDP-to-GTP exchange factor for Gsp1p. (861 aa)
SMD3Small nuclear ribonucleoprotein Sm D3; Core Sm protein Sm D3; part of heteroheptameric complex (with Smb1p, Smd1p, Smd2p, Sme1p, Smx3p, and Smx2p) that is part of the spliceosomal U1, U2, U4, and U5 snRNPs; homolog of human Sm D3. (101 aa)
HSP104Disaggregase; heat shock protein that cooperates with Ydj1p (Hsp40) and Ssa1p (Hsp70) to refold and reactivate previously denatured, aggregated proteins; responsive to stresses including: heat, ethanol, and sodium arsenite; involved in [PSI+] propagation; protein becomes more abundant and forms cytoplasmic foci in response to DNA replication stress; potentiated Hsp104p variants decrease TDP-43 proteotoxicity by eliminating its cytoplasmic aggregation; Belongs to the ClpA/ClpB family. (908 aa)
TEF4Gamma subunit of translational elongation factor eEF1B; stimulates the binding of aminoacyl-tRNA (AA-tRNA) to ribosomes by releasing eEF1A (Tef1p/Tef2p) from the ribosomal complex. (412 aa)
FBA1Fructose 1,6-bisphosphate aldolase; required for glycolysis and gluconeogenesis; catalyzes conversion of fructose 1,6 bisphosphate to glyceraldehyde-3-P and dihydroxyacetone-P; locates to mitochondrial outer surface upon oxidative stress; N-terminally propionylated in vivo; Belongs to the class II fructose-bisphosphate aldolase family. (359 aa)
ATP7Subunit d of the stator stalk of mitochondrial F1F0 ATP synthase; F1F0 ATP synthase is a large, evolutionarily conserved enzyme complex required for ATP synthesis. (174 aa)
ATP2Beta subunit of the F1 sector of mitochondrial F1F0 ATP synthase; which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; F1 translationally regulates ATP6 and ATP8 expression to achieve a balanced output of ATP synthase genes encoded in nucleus and mitochondria; phosphorylated; Belongs to the ATPase alpha/beta chains family. (511 aa)
CPA2Carbamoyl-phosphate synthase arginine-specific large chain; Large subunit of carbamoyl phosphate synthetase; carbamoyl phosphate synthetase catalyzes a step in the synthesis of citrulline, an arginine precursor. (1118 aa)
TDH2Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication. (332 aa)
PHO90Low-affinity phosphate transporter; acts upstream of Pho81p in regulation of the PHO pathway; deletion of pho84, pho87, pho89, pho90, and pho91 causes synthetic lethality; transcription independent of Pi and Pho4p activity; overexpression results in vigorous growth; PHO90 has a paralog, PHO87, that arose from the whole genome duplication; Belongs to the CitM (TC 2.A.11) transporter family. (881 aa)
TIF2Translation initiation factor eIF4A; DEA(D/H)-box RNA helicase that couples ATPase activity to RNA binding and unwinding; forms a dumbbell structure of two compact domains connected by a linker; interacts with eIF4G; protein abundance increases in response to DNA replication stress; TIF2 has a paralog, TIF1, that arose from the whole genome duplication. (395 aa)
URA2Glutamine-dependent carbamoyl-phosphate synthase; Bifunctional carbamoylphosphate synthetase/aspartate transcarbamylase; catalyzes the first two enzymatic steps in the de novo biosynthesis of pyrimidines; both activities are subject to feedback inhibition by UTP; In the central section; belongs to the metallo-dependent hydrolases superfamily. DHOase family. CAD subfamily. (2214 aa)
TDH1Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria. (332 aa)
ERG11Lanosterol 14-alpha-demethylase; catalyzes C-14 demethylation of lanosterol to form 4,4''-dimethyl cholesta-8,14,24-triene-3-beta-ol in ergosterol biosynthesis pathway; transcriptionally down-regulated when ergosterol is in excess; member of cytochrome P450 family; associated and coordinately regulated with the P450 reductase Ncp1p; human CYP51A1 functionally complements the lethality of the erg11 null mutation. (530 aa)
YGR201CPutative elongation factor 1 gamma homolog; Putative protein of unknown function. (225 aa)
TDH3Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bacteria; binds AU-rich RNA. (332 aa)
NUP57FG-nucleoporin component of central core of the nuclear pore complex; contributes directly to nucleocytoplasmic transport and maintenance of the nuclear pore complex (NPC) permeability barrier; found in stable complex with Nic96p and two other FG-nucleoproteins (Nsp1p and Nup49p). (541 aa)
NUP49FG-nucleoporin component of central core of the nuclear pore complex; contributes directly to nucleocytoplasmic transport and maintenance of the nuclear pore complex (NPC) permeability barrier; found in stable complex with Nic96p and two other FG-nucleoproteins (Nsp1p and Nup57p). (472 aa)
NUP145Nucleoporin NUP145C; Essential protein with distinct roles in two nuclear pore subcomplexes; catalyzes its own proteolytic cleavage in vivo to generate a C-terminal fragment that is a structural component of the Nup84p subcomplex (with roles in NPC biogenesis and localization of genes to the nuclear periphery), and an N-terminal fragment that is one of several FG-nucleoporins within the NPC central core directly responsible for nucleocytoplasmic transport; homologous to human NUP98. (1317 aa)
MMS2Ubiquitin-conjugating enzyme variant; involved in error-free postreplication repair; forms a heteromeric complex with Ubc13p, an active ubiquitin-conjugating enzyme; cooperates with chromatin-associated RING finger proteins, Rad18p and Rad5p; protein abundance increases in response to DNA replication stress. (137 aa)
ACT1Actin; structural protein involved in cell polarization, endocytosis, and other cytoskeletal functions. (375 aa)
SMT3Ubiquitin-like protein of the SUMO family; conjugated to lysine residues of target proteins; associates with transcriptionally active genes; regulates chromatid cohesion, chromosome segregation, APC-mediated proteolysis, DNA replication and septin ring dynamics; human homolog SUMO1 can complement yeast null mutant. (101 aa)
EFT2Elongation factor 2 (EF-2), also encoded by EFT1; catalyzes ribosomal translocation during protein synthesis; contains diphthamide, the unique posttranslationally modified histidine residue specifically ADP-ribosylated by diphtheria toxin; EFT2 has a paralog, EFT1, that arose from the whole genome duplication. (842 aa)
ATP17Subunit f of the F0 sector of mitochondrial F1F0 ATP synthase; F1F0 ATP synthase is a large, evolutionarily conserved enzyme complex required for ATP synthesis. (101 aa)
CPR5Peptidyl-prolyl cis-trans isomerase (cyclophilin) of the ER; catalyzes the cis-trans isomerization of peptide bonds N-terminal to proline residues; transcriptionally induced in response to unfolded proteins in the ER; CPR5 has a paralog, CPR2, that arose from the whole genome duplication. (225 aa)
ATP5Subunit 5 of the stator stalk of mitochondrial F1F0 ATP synthase; F1F0 ATP synthase is a large, evolutionarily conserved enzyme complex required for ATP synthesis; homologous to bovine subunit OSCP (oligomycin sensitivity-conferring protein); phosphorylated; Belongs to the ATPase delta chain family. (212 aa)
CDC48Cell division control protein 48; AAA ATPase; subunit of polyUb-selective segregase complex involved in ERAD, INM-associated degradation (INMAD), mitotic spindle disassembly, macroautophagy, PMN, ribosome-associated degradation, ribophagy, homotypic ER membrane fusion, SCF complex disassembly, cell wall integrity during heat stress, and telomerase regulation; mobilizes membrane-anchored transcription factors by regulated Ub/proteasome-dependent processing (RUP); human ortholog VCP complements a cdc48 mutant. (835 aa)
PHO87Low-affinity inorganic phosphate (Pi) transporter; acts upstream of Pho81p in regulation of the PHO pathway; expression is independent of Pi concentration and Pho4p activity; contains 12 membrane-spanning segments; PHO87 has a paralog, PHO90, that arose from the whole genome duplication. (923 aa)
PGK13-phosphoglycerate kinase; catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis. (416 aa)
CDC28Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant. (298 aa)
ATP3Gamma subunit of the F1 sector of mitochondrial F1F0 ATP synthase; F1F0 ATP synthase is a large, evolutionarily conserved enzyme complex required for ATP synthesis. (311 aa)
ATP1Alpha subunit of the F1 sector of mitochondrial F1F0 ATP synthase; which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; F1 translationally regulates ATP6 and ATP8 expression to achieve a balanced output of ATP synthase genes encoded in nucleus and mitochondria; phosphorylated; N-terminally propionylated in vivo; Belongs to the ATPase alpha/beta chains family. (545 aa)
CDC19Pyruvate kinase; functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to pyruvate, the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration; regulated via allosteric activation by fructose bisphosphate; CDC19 has a paralog, PYK2, that arose from the whole genome duplication. (500 aa)
SSA1Heat shock protein SSA1; ATPase involved in protein folding and NLS-directed nuclear transport; member of HSP70 family; required for ubiquitin-dependent degradation of short-lived proteins; forms chaperone complex with Ydj1p; localized to nucleus, cytoplasm, cell wall; 98% identical to paralog Ssa2p with different functional specificity in propagation of yeast [URE3] prions, vacuolar-mediated degradations of gluconeogenesis enzymes; general targeting factor of Hsp104p to prion fibrils. (642 aa)
ATP6Subunit a of the F0 sector of mitochondrial F1F0 ATP synthase; mitochondrially encoded; translation is specifically activated by Atp22p; ATP6 and ATP8 mRNAs are not translated in the absence of the F1 sector of ATPase; mutations in human ortholog MT-ATP6 are associated with neurodegenerative disorders such as Neurogenic Ataxia and Retinitis Pigmentosa (NARP), Leigh syndrome (LS), Charcot-Marie-Tooth (CMT), and ataxia telangiectasia. (259 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (18%) [HD]