STRINGSTRING
SPT5 SPT5 NTG1 NTG1 RRP43 RRP43 RRP42 RRP42 RRP45 RRP45 SPT4 SPT4 RRP46 RRP46 MTR3 MTR3 SKI6 SKI6 RRP4 RRP4 MTR4 MTR4 PAP1 PAP1 RNH1 RNH1 DSS1 DSS1 CSL4 CSL4 NRD1 NRD1 DIS3 DIS3 RRP40 RRP40 RRP6 RRP6 NAB3 NAB3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SPT5Spt4p/5p (DSIF) transcription elongation factor complex subunit; the Spt4/5 complex binds to ssRNA in a sequence-specific manner, and in concert with RNAP I and II has multiple roles regulating transcriptional elongation, RNA processing, quality control, and transcription-coupled repair; interacts with DNA upstream of RNAPII and the non-template strand of the transcription bubble; Spt5p is the only transcription elongation factor conserved in all domains of life. (1063 aa)
NTG1Endonuclease III homolog 1; DNA N-glycosylase and apurinic/apyrimidinic (AP) lyase; involved in base excision repair; acts in both nucleus and mitochondrion; creates a double-strand break at mtDNA origins that stimulates replication in response to oxidative stress; required for maintaining mitochondrial genome integrity; NTG1 has a paralog, NTG2, that arose from the whole genome duplication; Belongs to the Nth/MutY family. (399 aa)
RRP43Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp43p (OIP2, EXOSC8); protein abundance increases in response to DNA replication stress. (394 aa)
RRP42Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp42p (EXOSC7). (265 aa)
RRP45Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp45p (PM/SCL-75, EXOSC9); protein abundance increases in response to DNA replication stress. (305 aa)
SPT4Spt4p/5p (DSIF) transcription elongation factor complex subunit; the Spt4/5 complex binds to ssRNA in a sequence-specific manner, and along with RNAP I and II has multiple roles regulating transcriptional elongation, RNA processing, quality control, and transcription-coupled repair; localizes to kinetochores and heterochromatin, influencing chromosomal dynamics and silencing; required for transcription through long trinucleotide repeats in ORFs and non-protein coding regions. (102 aa)
RRP46Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp46p (EXOSC5). (223 aa)
MTR3Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hMtr3p (EXOSC6). (250 aa)
SKI6Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp41p (EXOSC4). (246 aa)
RRP4Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; predicted to contain RNA binding domains; has similarity to human hRrp4p (EXOSC2). (359 aa)
MTR4ATP-dependent 3'-5' RNA helicase of the DExD/H family; involved in nuclear RNA processing and degradation both as a component of TRAMP complex and in TRAMP-independent processes; TRAMP unwinds RNA duplexes, with Mtr4p unwinding activity stimulated by Pap2p/Air2p but not dependent on ongoing polyadenylation; contains an arch domain, with two coiled-coil arms/stalks and a globular fist/KOW domain, which has RNA binding activity and is required for 5.8S rRNA processing; Belongs to the helicase family. SKI2 subfamily. (1073 aa)
PAP1Poly(A) polymerase; one of three factors required for mRNA 3'-end polyadenylation, forms multiprotein complex with polyadenylation factor I (PF I), also required for mRNA nuclear export; may also polyadenylate rRNAs; required for gene looping. (568 aa)
RNH1Ribonuclease H1; able to bind double-stranded RNAs and RNA-DNA hybrids; associates with RNAse polymerase I. (348 aa)
DSS13'-5' exoribonuclease; component of the mitochondrial degradosome along with the ATP-dependent RNA helicase Suv3p; the degradosome associates with the ribosome and mediates turnover of aberrant or unprocessed RNAs. (969 aa)
CSL4Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; predicted to contain an S1 RNA binding domain; human homolog EXOSC1 partially complements yeast csl4 null mutant, and can complement inviability of strain in which expression of CSL4 is repressed. (292 aa)
NRD1Protein NRD1; RNA-binding subunit of Nrd1 complex; complex interacts with exosome to mediate 3'-end formation of some mRNAs, snRNAs, snoRNAs, and CUTs; interacts with CTD of RNA pol II large subunit Rpo21p at phosphorylated Ser5 to direct transcription termination of non-polyadenylated transcripts; H3K4 trimethylation of transcribed regions by Set1p enhances recruitment of Nrd1p to those sites; role in regulation of mitochondrial abundance and cell size. (575 aa)
DIS3Exosome core complex catalytic subunit; has both endonuclease and 3'-5' exonuclease activity; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; role in degradation of tRNAs; similar to E. coli RNase R and to human DIS3, which partially complements dis3-81 heat sensitivity; mutations in Dis3p analogous to human mutations implicated in multiple myeloma impair exosome function; protein abundance increases under to DNA replication stress. (1001 aa)
RRP40Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; predicted to contain both S1 and KH RNA binding domains; mutations in the human homolog, EXOSC3, cause pontocerebellar hypoplasia with motor neuron degeneration. (240 aa)
RRP6Nuclear exosome exonuclease component; has 3'-5' exonuclease activity that is regulated by Lrp1p; involved in RNA processing, maturation, surveillance, degradation, tethering, and export; role in sn/snoRNAs precursor degradation; forms a stable heterodimer with Lrp1p; has similarity to E. coli RNase D and to human PM-Sc1 100 (EXOSC10); mutant displays reduced transcription elongation in the G-less-based. (733 aa)
NAB3RNA-binding protein, subunit of Nrd1 complex (Nrd1p-Nab3p-Sen1p); complex interacts with exosome to mediate 3'-end formation of some mRNAs, snRNAs, snoRNAs, and CUTs; required for termination of non-poly(A) transcripts and efficient splicing; Nrd1-Nab3 pathway appears to have a role in rapid suppression of some genes when cells are shifted to poor growth conditions, indicating role for Nrd1-Nab3 in regulating cellular response to nutrient availability. (802 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (12%) [HD]