Your Input: | |||||
MIG1 | Regulatory protein MIG1; Transcription factor involved in glucose repression; sequence specific DNA binding protein containing two Cys2His2 zinc finger motifs; regulated by the SNF1 kinase and the GLC7 phosphatase; regulates filamentous growth along with Mig2p in response to glucose depletion; activated in stochastic pulses of nuclear localization, shuttling between cytosol and nucleus depending on external glucose levels and its phosphorylation state; Belongs to the creA/MIG C2H2-type zinc-finger protein family. (504 aa) | ||||
GAL3 | Protein GAL3; Transcriptional regulator; involved in activation of the GAL genes in response to galactose; forms a complex with Gal80p to relieve Gal80p inhibition of Gal4p; binds galactose and ATP but does not have galactokinase activity; GAL3 has a paralog, GAL1, that arose from the whole genome duplication; Belongs to the GHMP kinase family. GalK subfamily. (520 aa) | ||||
NRG1 | Transcriptional regulator NRG1; Transcriptional repressor; recruits the Cyc8p-Tup1p complex to promoters; mediates glucose repression and negatively regulates a variety of processes including filamentous growth and alkaline pH response; activated in stochastic pulses of nuclear localization in response to low glucose. (231 aa) | ||||
UME6 | Transcriptional regulatory protein UME6; Rpd3L histone deacetylase complex subunit; key transcriptional regulator of early meiotic genes; involved in chromatin remodeling and transcriptional repression via DNA looping; binds URS1 upstream regulatory sequence, represses transcription by recruiting conserved histone deacetylase Rpd3p (through co-repressor Sin3p) and chromatin-remodeling factor Isw2p; couples metabolic responses to nutritional cues with initiation and progression of meiosis, forms compl. (836 aa) | ||||
ADR1 | Regulatory protein ADR1; Carbon source-responsive zinc-finger transcription factor; required for transcription of the glucose-repressed gene ADH2, of peroxisomal protein genes, and of genes required for ethanol, glycerol, and fatty acid utilization. (1323 aa) | ||||
MET32 | Transcriptional regulator MET32; Zinc-finger DNA-binding transcription factor; involved in transcriptional regulation of the methionine biosynthetic genes; targets strong transcriptional activator Met4p to promoters of sulfur metabolic genes; feedforward loop exists in the regulation of genes controlled by Met4p and Met32p; lack of such a loop for MET31 may account for the differential actions of Met32p and Met31p; MET32 has a paralog, MET31, that arose from the whole genome duplication. (191 aa) | ||||
YAP6 | Basic leucine zipper (bZIP) transcription factor; physically interacts with the Tup1-Cyc8 complex and recruits Tup1p to its targets; overexpression increases sodium and lithium tolerance; computational analysis suggests a role in regulation of expression of genes involved in carbohydrate metabolism; YAP6 has a paralog, CIN5, that arose from the whole genome duplication. (383 aa) | ||||
GCN4 | General control protein GCN4; bZIP transcriptional activator of amino acid biosynthetic genes; activator responds to amino acid starvation; expression is tightly regulated at both the transcriptional and translational levels; Belongs to the bZIP family. GCN4 subfamily. (281 aa) | ||||
HSF1 | Trimeric heat shock transcription factor; activates multiple genes in response to highly diverse stresses; recognizes variable heat shock elements (HSEs) consisting of inverted NGAAN repeats; monitors translational status of cell through an RQC (Ribosomal Quality Control)-mediated translation-stress signal; involved in diauxic shift; posttranslationally regulated; human homolog HSF1 with linker region mutations can complement yeast hsf1 mutant; Belongs to the HSF family. (833 aa) | ||||
STE12 | Protein STE12; Transcription factor that is activated by a MAPK signaling cascade; activates genes involved in mating or pseudohyphal/invasive growth pathways; cooperates with Tec1p transcription factor to regulate genes specific for invasive growth. (688 aa) | ||||
MET28 | bZIP transcriptional activator in the Cbf1p-Met4p-Met28p complex; participates in the regulation of sulfur metabolism. (187 aa) | ||||
DAL81 | Transcriptional activator protein DAL81; Positive regulator of genes in multiple nitrogen degradation pathways; contains DNA binding domain but does not appear to bind the dodecanucleotide sequence present in the promoter region of many genes involved in allantoin catabolism. (970 aa) | ||||
CBF1 | Centromere-binding protein 1; Basic helix-loop-helix (bHLH) protein; forms homodimer to bind E-box consensus sequence CACGTG present at MET gene promoters and centromere DNA element I (CDEI); affects nucleosome positioning at this motif; associates with other transcription factors such as Met4p and Isw1p to mediate transcriptional activation or repression; associates with kinetochore proteins, required for chromosome segregation; protein abundance increases in response to DNA replication stress. (351 aa) | ||||
PHD1 | Putative transcription factor PHD1; Transcriptional activator that enhances pseudohyphal growth; physically interacts with the Tup1-Cyc8 complex and recruits Tup1p to its targets; regulates expression of FLO11, an adhesin required for pseudohyphal filament formation; similar to StuA, an A. nidulans developmental regulator; potential Cdc28p substrate; PHD1 has a paralog, SOK2, that arose from the whole genome duplication. (366 aa) | ||||
MSN4 | Zinc finger protein MSN4; Stress-responsive transcriptional activator; activated in stochastic pulses of nuclear localization in response to various stress conditions; binds DNA at stress response elements of responsive genes, inducing gene expression; involved in diauxic shift. (630 aa) | ||||
HAP4 | Transcriptional activator HAP4; Transcription factor; subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression; provides the principal activation function of the complex; involved in diauxic shift. (554 aa) | ||||
BAS1 | Myb-like DNA-binding protein BAS1; Myb-related transcription factor; involved in regulating basal and induced expression of genes of the purine and histidine biosynthesis pathways; also involved in regulation of meiotic recombination at specific genes. (811 aa) | ||||
HSP104 | Disaggregase; heat shock protein that cooperates with Ydj1p (Hsp40) and Ssa1p (Hsp70) to refold and reactivate previously denatured, aggregated proteins; responsive to stresses including: heat, ethanol, and sodium arsenite; involved in [PSI+] propagation; protein becomes more abundant and forms cytoplasmic foci in response to DNA replication stress; potentiated Hsp104p variants decrease TDP-43 proteotoxicity by eliminating its cytoplasmic aggregation; Belongs to the ClpA/ClpB family. (908 aa) | ||||
SFP1 | Transcription factor SFP1; Regulates transcription of ribosomal protein and biogenesis genes; regulates response to nutrients and stress, G2/M transitions during mitotic cell cycle and DNA-damage response, and modulates cell size; regulated by TORC1 and Mrs6p; sequence of zinc finger, ChIP localization data, and protein-binding microarray (PBM) data, and computational analyses suggest it binds DNA directly at highly active RP genes and indirectly through Rap1p at others; can form the [ISP+] prion. (683 aa) | ||||
LEU3 | Regulatory protein LEU3; Zinc-knuckle transcription factor, repressor and activator; regulates genes involved in branched chain amino acid biosynthesis and ammonia assimilation; acts as a repressor in leucine-replete conditions and as an activator in the presence of alpha-isopropylmalate, an intermediate in leucine biosynthesis that accumulates during leucine starvation. (886 aa) | ||||
SOK2 | Nuclear protein that negatively regulates pseudohyphal differentiation; plays a regulatory role in the cyclic AMP (cAMP)-dependent protein kinase (PKA) signal transduction pathway; relocalizes to the cytosol in response to hypoxia; SOK2 has a paralog, PHD1, that arose from the whole genome duplication. (785 aa) | ||||
MSN2 | Zinc finger protein MSN2; Stress-responsive transcriptional activator; activated in stochastic pulses of nuclear localization in response to various stress conditions; binds DNA at stress response elements of responsive genes; relative distribution to nucleus increases upon DNA replication stress. (704 aa) | ||||
MET4 | Leucine-zipper transcriptional activator; responsible for regulation of sulfur amino acid pathway; requires different combinations of auxiliary factors Cbf1p, Met28p, Met31p and Met32p; feedforward loop exists in the regulation of genes controlled by Met4p and Met32p; can be ubiquitinated by ubiquitin ligase SCF-Met30p, is either degraded or maintained in an inactive state; regulates degradation of its own DNA-binding cofactors by targeting them to SCF-Met30p; Belongs to the bZIP family. (672 aa) | ||||
GCR2 | Transcriptional activator of genes involved in glycolysis; interacts and functions with the DNA-binding protein Gcr1p. (534 aa) | ||||
RAP1 | DNA-binding protein RAP1; Essential DNA-binding transcription regulator that binds many loci; involved in transcription activation, repression, chromatin silencing, telomere length maintenance; relocalizes to cytosol under hypoxia; conserved protein with N-terminal BRCT domain, central region with homology to Myb DNA binding domain, and C-terminal Rap1-specific protein-interaction domain (RCT domain); recruits Sir complex to telomeric DNA; present in quiescent cell telomere hyperclusters. (827 aa) | ||||
MET31 | Transcriptional regulator MET31; Zinc-finger DNA-binding transcription factor; targets strong transcriptional activator Met4p to promoters of sulfur metabolic genes; involved in transcriptional regulation of the methionine biosynthetic genes; feedforward loop controlling expression of MET32 and the lack of such a loop for MET31 may account for the differential actions of Met31p and Met32p; MET31 has a paralog, MET32, that arose from the whole genome duplication. (177 aa) | ||||
DIG1 | Down-regulator of invasive growth 1; MAP kinase-responsive inhibitor of the Ste12p transcription factor; involved in the regulation of mating-specific genes and the invasive growth pathway; related regulators Dig1p and Dig2p bind to Ste12p; DIG1 has a paralog, DIG2, that arose from the whole genome duplication. (452 aa) | ||||
GCR1 | Transcriptional activator of genes involved in glycolysis; DNA-binding protein that interacts and functions with the transcriptional activator Gcr2p. (785 aa) | ||||
ROX1 | Heme-dependent repressor of hypoxic genes; mediates aerobic transcriptional repression of hypoxia induced genes such as COX5b and CYC7; repressor function regulated through decreased promoter occupancy in response to oxidative stress; contains an HMG domain that is responsible for DNA bending activity; involved in the hyperosmotic stress resistance. (368 aa) | ||||
FHL1 | Pre-rRNA-processing protein FHL1; Regulator of ribosomal protein (RP) transcription; has forkhead associated domain that binds phosphorylated proteins; recruits coactivator Ifh1p or corepressor Crf1p to RP gene promoters; also has forkhead DNA-binding domain though in vitro DNA binding assays give inconsistent results; computational analyses suggest it binds DNA directly at highly active RP genes and indirectly through Rap1p motifs at others; suppresses RNA pol III and splicing factor prp4 mutants. (936 aa) |