STRINGSTRING
VMA3 VMA3 ICP55 ICP55 VMA7 VMA7 VMA11 VMA11 PEP7 PEP7 PMA1 PMA1 VPH1 VPH1 VPS34 VPS34
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
VMA3V-type proton ATPase subunit c; Proteolipid subunit c of the V0 domain of vacuolar H(+)-ATPase; dicyclohexylcarbodiimide binding subunit; required for vacuolar acidification and important for copper and iron metal ion homeostasis; Belongs to the V-ATPase proteolipid subunit family. (160 aa)
ICP55Intermediate cleaving peptidase 55; Mitochondrial aminopeptidase; cleaves the N termini of at least 38 imported proteins after cleavage by the mitochondrial processing peptidase (MPP), thereby increasing their stability; member of the aminopeptidase P family. (511 aa)
VMA7Subunit F of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; required for the V1 domain to assemble onto the vacuolar membrane; the V1 peripheral membrane domain of vacuolar H+-ATPase (V-ATPase) has eight subunits. (118 aa)
VMA11Vacuolar ATPase V0 domain subunit c'; involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen. (164 aa)
PEP7Adaptor protein involved in vesicle-mediated vacuolar protein sorting; multivalent adaptor protein; facilitates vesicle-mediated vacuolar protein sorting by ensuring high-fidelity vesicle docking and fusion, which are essential for targeting of vesicles to the endosome; required for vacuole inheritance. (515 aa)
PMA1Plasma membrane P2-type H+-ATPase; pumps protons out of cell; major regulator of cytoplasmic pH and plasma membrane potential; long-lived protein asymmetrically distributed at plasma membrane between mother cells and buds; accumulates at high levels in mother cells during aging, buds emerge with very low levels of Pma1p, newborn cells have low levels of Pma1p; Hsp30p plays a role in Pma1p regulation; interactions with Std1p appear to propagate [GAR+]; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. (918 aa)
VPH1Subunit a of vacuolar-ATPase V0 domain; one of two isoforms (Vph1p and Stv1p); Vph1p is located in V-ATPase complexes of the vacuole while Stv1p is located in V-ATPase complexes of the Golgi and endosomes; relative distribution to the vacuolar membrane decreases upon DNA replication stress; human homolog ATP6V0A4 implicated in renal tubular acidosis, can complement yeast null mutant. (840 aa)
VPS34Phosphatidylinositol (PI) 3-kinase that synthesizes PI-3-phosphate; forms membrane-associated signal transduction complex with Vps15p to regulate protein sorting; activated by the GTP-bound form of Gpa1p; a fraction is localized, with Vps15p, to nuclear pores at nucleus-vacuole junctions and may facilitate transcription elongation for genes positioned at the nuclear periphery; Belongs to the PI3/PI4-kinase family. (875 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (18%) [HD]