STRINGSTRING
ERG8 ERG8 TKL1 TKL1 BTS1 BTS1 RKI1 RKI1 IMA2 IMA2 MVD1 MVD1 ZWF1 ZWF1 URE2 URE2 TKL2 TKL2 GLK1 GLK1 PGK1 PGK1 IDP1 IDP1 THI3 THI3 TSA2 TSA2 ADH4 ADH4 NQM1 NQM1 PDC6 PDC6 TDH3 TDH3 GND2 GND2 IMA1 IMA1 GND1 GND1 ERG9 ERG9 IMA3 IMA3 TDH1 TDH1 IMA5 IMA5 TDH2 TDH2 PDC1 PDC1 PDC5 PDC5 IDP2 IDP2 TAL1 TAL1 ERG12 ERG12 IDP3 IDP3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ERG8Phosphomevalonate kinase; an essential cytosolic enzyme that acts in the biosynthesis of isoprenoids and sterols, including ergosterol, from mevalonate. (451 aa)
TKL1Transketolase; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; TKL1 has a paralog, TKL2, that arose from the whole genome duplication. (680 aa)
BTS1Geranylgeranyl diphosphate synthase (GGPS); increases the intracellular pool of geranylgeranyl diphosphate, suppressor of bet2 mutation that causes defective geranylgeranylation of small GTP-binding proteins that mediate vesicular traffic. (335 aa)
RKI1Ribose-5-phosphate ketol-isomerase; catalyzes the interconversion of ribose 5-phosphate and ribulose 5-phosphate in the pentose phosphate pathway; participates in pyridoxine biosynthesis. (258 aa)
IMA2Oligo-1,6-glucosidase IMA2; Isomaltase (alpha-1,6-glucosidase/alpha-methylglucosidase); preferred specificity for isomaltose, alpha-methylglucoside, and palatinose, but also exhibits alpha-1,2 glucosidase activity on sucrose and kojibiose, and can cleave the 1,3-alpha linkage of nigerose and turanose and the alpha-1,5 linkage of leucrose in vitro; not required for isomaltose utilization, but Ima2p overexpression allows the ima1 null mutant to grow on isomaltose. (589 aa)
MVD1Mevalonate pyrophosphate decarboxylase; essential enzyme involved in the biosynthesis of isoprenoids and sterols, including ergosterol; acts as a homodimer; Belongs to the diphosphomevalonate decarboxylase family. (396 aa)
ZWF1Glucose-6-phosphate dehydrogenase (G6PD); catalyzes the first step of the pentose phosphate pathway; involved in adapting to oxidative stress; protein abundance increases in response to DNA replication stress; homolog of human G6PD which is deficient in patients with hemolytic anemia; human G6PD can complement yeast zwf1 null mutant. (505 aa)
URE2Nitrogen catabolite repression transcriptional regulator; inhibits GLN3 transcription in good nitrogen source; role in sequestering Gln3p and Gat1p to the cytoplasm; has glutathione peroxidase activity and can mutate to acquire GST activity; self-assembly under limited nitrogen conditions creates [URE3] prion and releases catabolite repression. (354 aa)
TKL2Transketolase; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; TKL2 has a paralog, TKL1, that arose from the whole genome duplication. (681 aa)
GLK1Glucokinase-1; Glucokinase; catalyzes the phosphorylation of glucose at C6 in the first irreversible step of glucose metabolism; one of three glucose phosphorylating enzymes; expression regulated by non-fermentable carbon sources; GLK1 has a paralog, EMI2, that arose from the whole genome duplication; Belongs to the hexokinase family. (500 aa)
PGK13-phosphoglycerate kinase; catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis. (416 aa)
IDP1Mitochondrial NADP-specific isocitrate dehydrogenase; catalyzes the oxidation of isocitrate to alpha-ketoglutarate; not required for mitochondrial respiration and may function to divert alpha-ketoglutarate to biosynthetic processes. (428 aa)
THI3Thiamine metabolism regulatory protein THI3; Regulatory protein that binds Pdc2p and Thi2p transcription factors; activates thiamine biosynthesis transcription factors Pdc2p and Thi2p by binding to them, but releases and de-activates them upon binding to thiamine pyrophosphate (TPP), the end product of the pathway; has similarity to decarboxylases but enzymatic activity is not detected. (609 aa)
TSA2Peroxiredoxin TSA2; Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants; protein abundance increases in response to DNA replication stress; TSA2 has a paralog, TSA1, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. (196 aa)
ADH4Alcohol dehydrogenase isoenzyme type IV; dimeric enzyme demonstrated to be zinc-dependent despite sequence similarity to iron-activated alcohol dehydrogenases; transcription is induced in response to zinc deficiency. (382 aa)
NQM1Transaldolase of unknown function; transcription is repressed by Mot1p and induced by alpha-factor and during diauxic shift; NQM1 has a paralog, TAL1, that arose from the whole genome duplication. (333 aa)
PDC6Minor isoform of pyruvate decarboxylase; decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol-dependent, and is strongly induced during sulfur limitation; Belongs to the TPP enzyme family. (563 aa)
TDH3Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bacteria; binds AU-rich RNA. (332 aa)
GND26-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; GND2 has a paralog, GND1, that arose from the whole genome duplication. (492 aa)
IMA1Oligo-1,6-glucosidase IMA1; Major isomaltase (alpha-1,6-glucosidase/alpha-methylglucosidase); required for isomaltose utilization; preferred specificity for isomaltose, alpha-methylglucoside, and palatinose, but also exhibits alpha-1,2 glucosidase activity on sucrose and kojibiose, and can cleave the 1,3-alpha linkage of nigerose and turanose and the alpha-1,5 linkage of leucrose in vitro; member of the IMA isomaltase family; Belongs to the glycosyl hydrolase 13 family. (589 aa)
GND16-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication. (489 aa)
ERG9Squalene synthase; Farnesyl-diphosphate farnesyl transferase (squalene synthase); joins two farnesyl pyrophosphate moieties to form squalene in the sterol biosynthesis pathway. (444 aa)
IMA3Oligo-1,6-glucosidase IMA3; Alpha-glucosidase; weak, but broad substrate specificity for alpha-1,4- and alpha-1,6-glucosides; member of IMA isomaltase family; not required for isomaltose utilization, but Ima3p overexpression allows the ima1 null mutant to grow on isomaltose; lower activitiy and thermostability in vitro than Ima2p despite sequence difference of only 3 amino acids; cleaves alpha-1,3 linkage of nigerose and turanose, but not alpha-1,5 of leucrose; identical to IMA4; Belongs to the glycosyl hydrolase 13 family. (589 aa)
TDH1Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria. (332 aa)
IMA5Oligo-1,6-glucosidase IMA5; Alpha-glucosidase; specificity for isomaltose, maltose, and palatinose, but not alpha-methylglucoside; most distant member of the IMA isomaltase family, but with similar catalytic properties as Ima1p and Ima2p; not required for isomaltose utilization, but Ima5p overexpression allows the ima1 null mutant to grow on isomaltose; can cleave alpha-1,3 linkage of nigerose and turanose and alpha-1,5 linkage of leucrose and is very sensitive to temperature in vitro. (581 aa)
TDH2Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication. (332 aa)
PDC1Major of three pyruvate decarboxylase isozymes; key enzyme in alcoholic fermentation; decarboxylates pyruvate to acetaldehyde; involved in amino acid catabolism; subject to glucose-, ethanol-, and autoregulation; activated by phosphorylation in response to glucose levels; N-terminally propionylated in vivo; Belongs to the TPP enzyme family. (563 aa)
PDC5Minor isoform of pyruvate decarboxylase; key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde, regulation is glucose- and ethanol-dependent, repressed by thiamine, involved in amino acid catabolism. (563 aa)
IDP2Cytosolic NADP-specific isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose; IDP2 has a paralog, IDP3, that arose from the whole genome duplication. (412 aa)
TAL1Transaldolase, enzyme in the non-oxidative pentose phosphate pathway; converts sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to erythrose 4-phosphate and fructose 6-phosphate; TAL1 has a paralog, NQM1, that arose from the whole genome duplication. (335 aa)
ERG12Mevalonate kinase; acts in the biosynthesis of isoprenoids and sterols, including ergosterol, from mevalonate; human MVK functionally complements the lethality of the erg12 null mutation. (443 aa)
IDP3Peroxisomal NADP-dependent isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate with the formation of NADP(H+), required for growth on unsaturated fatty acids; IDP3 has a paralog, IDP2, that arose from the whole genome duplication. (420 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (10%) [HD]