STRINGSTRING
NTG1 NTG1 SKI8 SKI8 TDH3 TDH3 SKI6 SKI6 LRP1 LRP1 AIR1 AIR1 MTR4 MTR4 TDH1 TDH1 INO1 INO1 RPS14B RPS14B TDH2 TDH2 GUF1 GUF1 SKI2 SKI2 RNT1 RNT1 DSS1 DSS1 CSL4 CSL4 DIS3 DIS3 RRP40 RRP40 SKI7 SKI7 RPO31 RPO31 TYE7 TYE7 NAB3 NAB3 SKI3 SKI3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NTG1Endonuclease III homolog 1; DNA N-glycosylase and apurinic/apyrimidinic (AP) lyase; involved in base excision repair; acts in both nucleus and mitochondrion; creates a double-strand break at mtDNA origins that stimulates replication in response to oxidative stress; required for maintaining mitochondrial genome integrity; NTG1 has a paralog, NTG2, that arose from the whole genome duplication; Belongs to the Nth/MutY family. (399 aa)
SKI8Antiviral protein SKI8; Ski complex component and WD-repeat protein; mediates 3'-5' RNA degradation by the cytoplasmic exosome; also required for meiotic double-strand break recombination; null mutants have superkiller phenotype. (397 aa)
TDH3Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bacteria; binds AU-rich RNA. (332 aa)
SKI6Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp41p (EXOSC4). (246 aa)
LRP1Nuclear exosome-associated nucleic acid binding protein; involved in RNA processing, surveillance, degradation, tethering, and export; forms a stable heterodimer with Rrp6p and regulates its exonucleolytic activity; rapidly degraded by the proteasome in the absence of Rrp6p; homolog of mammalian nuclear matrix protein C1D involved in regulation of DNA repair and recombination. (184 aa)
AIR1Zinc knuckle protein; involved in nuclear RNA processing and degradation as a component of the TRAMP complex; stimulates the poly(A) polymerase activity of Pap2p in vitro; AIR1 has a paralog, AIR2, that arose from the whole genome duplication; although Air1p and Air2p are homologous TRAMP subunits, they have nonredundant roles in regulation of substrate specificity of the exosome. (360 aa)
MTR4ATP-dependent 3'-5' RNA helicase of the DExD/H family; involved in nuclear RNA processing and degradation both as a component of TRAMP complex and in TRAMP-independent processes; TRAMP unwinds RNA duplexes, with Mtr4p unwinding activity stimulated by Pap2p/Air2p but not dependent on ongoing polyadenylation; contains an arch domain, with two coiled-coil arms/stalks and a globular fist/KOW domain, which has RNA binding activity and is required for 5.8S rRNA processing; Belongs to the helicase family. SKI2 subfamily. (1073 aa)
TDH1Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria. (332 aa)
INO1Inositol-3-phosphate synthase; involved in synthesis of inositol phosphates and inositol-containing phospholipids; transcription is coregulated with other phospholipid biosynthetic genes by Ino2p and Ino4p, which bind the UASINO DNA element; Belongs to the myo-inositol 1-phosphate synthase family. (533 aa)
RPS14BProtein component of the small (40S) ribosomal subunit; required for ribosome assembly and 20S pre-rRNA processing; mutations confer cryptopleurine resistance; homologous to mammalian ribosomal protein S14 and bacterial S11; RPS14B has a paralog, RPS14A, that arose from the whole genome duplication. (138 aa)
TDH2Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication. (332 aa)
GUF1Translation factor GUF1, mitochondrial; Mitochondrial matrix GTPase; associates with mitochondrial ribosomes; important for translation under temperature and nutrient stress; may have a role in translational fidelity; similar to bacterial LepA elongation factor. (645 aa)
SKI2Antiviral helicase SKI2; Ski complex component and putative RNA helicase; mediates 3'-5' RNA degradation by the cytoplasmic exosome; null mutants have superkiller phenotype of increased viral dsRNAs and are synthetic lethal with mutations in 5'-3' mRNA decay; mutations in the human ortholog, SKIV2L, causes Syndromic diarrhea/Trichohepatoenteric (SD/THE) syndrome; Belongs to the helicase family. SKI2 subfamily. (1287 aa)
RNT1Ribonuclease 3; Nuclear dsRNA-specific ribonuclease (RNase III); involved in rDNA transcription, rRNA processing and U2 snRNA 3' end formation by cleavage of a stem-loop structure at the 3' end of U2 snRNA; involved in polyadenylation-independent transcription termination; involved in the cell wall stress response, regulating the degradation of cell wall integrity and morphogenesis checkpoint genes. (471 aa)
DSS13'-5' exoribonuclease; component of the mitochondrial degradosome along with the ATP-dependent RNA helicase Suv3p; the degradosome associates with the ribosome and mediates turnover of aberrant or unprocessed RNAs. (969 aa)
CSL4Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; predicted to contain an S1 RNA binding domain; human homolog EXOSC1 partially complements yeast csl4 null mutant, and can complement inviability of strain in which expression of CSL4 is repressed. (292 aa)
DIS3Exosome core complex catalytic subunit; has both endonuclease and 3'-5' exonuclease activity; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; role in degradation of tRNAs; similar to E. coli RNase R and to human DIS3, which partially complements dis3-81 heat sensitivity; mutations in Dis3p analogous to human mutations implicated in multiple myeloma impair exosome function; protein abundance increases under to DNA replication stress. (1001 aa)
RRP40Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; predicted to contain both S1 and KH RNA binding domains; mutations in the human homolog, EXOSC3, cause pontocerebellar hypoplasia with motor neuron degeneration. (240 aa)
SKI7Superkiller protein 7; GTP-binding protein that couples the Ski complex and exosome; putative pseudo-translational GTPase involved in 3'-to-5' mRNA decay pathway; interacts with both the cytoplasmic exosome and the Ski complex; eRF3-like domain targets nonstop mRNA for degradation; null mutants have a superkiller phenotype; SKI7 has a paralog, HBS1, that arose from the whole genome duplication; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. (747 aa)
RPO31RNA polymerase III largest subunit C160; part of core enzyme; similar to bacterial beta-prime subunit and to RPA190 and RPO21; Belongs to the RNA polymerase beta' chain family. (1460 aa)
TYE7Serine-rich protein that contains a bHLH DNA binding motif; binds E-boxes of glycolytic genes and contributes to their activation; may function as a transcriptional activator in Ty1-mediated gene expression; bHLH stands for basic-helix-loop-helix. (291 aa)
NAB3RNA-binding protein, subunit of Nrd1 complex (Nrd1p-Nab3p-Sen1p); complex interacts with exosome to mediate 3'-end formation of some mRNAs, snRNAs, snoRNAs, and CUTs; required for termination of non-poly(A) transcripts and efficient splicing; Nrd1-Nab3 pathway appears to have a role in rapid suppression of some genes when cells are shifted to poor growth conditions, indicating role for Nrd1-Nab3 in regulating cellular response to nutrient availability. (802 aa)
SKI3Superkiller protein 3; Ski complex component and TPR protein; mediates 3'-5' RNA degradation by the cytoplasmic exosome; null mutants have superkiller phenotype of increased viral dsRNAs and are synthetic lethal with mutations in 5'-3' mRNA decay; mutations in the human ortholog, TTC37, causes Syndromic diarrhea/Trichohepatoenteric (SD/THE) syndrome. (1432 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (36%) [HD]