STRINGSTRING
CLN3 CLN3 GAL1 GAL1 LYS2 LYS2 CDC28 CDC28 TYR1 TYR1 LEU2 LEU2 CIT2 CIT2 MBP1 MBP1 TRP1 TRP1 URA3 URA3 PRB1 PRB1 CAN1 CAN1 RNR1 RNR1 SWI4 SWI4 ADE5,7 ADE5,7 CTT1 CTT1 CLB1 CLB1 CLB6 CLB6 ADE3 ADE3 BAR1 BAR1 PBS2 PBS2 FAR1 FAR1 MSN4 MSN4 SIC1 SIC1 HOG1 HOG1 MET17 MET17 MSN2 MSN2 MCM1 MCM1 CLN1 CLN1 MSA1 MSA1 WHI5 WHI5 ADE2 ADE2 HIS3 HIS3 CIP1 CIP1 HHO1 HHO1 PEP4 PEP4 CLN2 CLN2 CLB2 CLB2 CLB5 CLB5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CLN3G1/S-specific cyclin CLN3; G1 cyclin involved in cell cycle progression; activates Cdc28p kinase to promote G1 to S phase transition; plays a role in regulating transcription of other G1 cyclins, CLN1 and CLN2; regulated by phosphorylation and proteolysis; acetyl-CoA induces CLN3 transcription in response to nutrient repletion to promote cell-cycle entry; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (580 aa)
GAL1Galactokinase; phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in the first step of galactose catabolism; expression regulated by Gal4p; human homolog GALK2 complements yeast null mutant; GAL1 has a paralog, GAL3, that arose from the whole genome duplication. (528 aa)
LYS2Alpha aminoadipate reductase; catalyzes the reduction of alpha-aminoadipate to alpha-aminoadipate 6-semialdehyde, which is the fifth step in biosynthesis of lysine; activation requires posttranslational phosphopantetheinylation by Lys5p; Belongs to the ATP-dependent AMP-binding enzyme family. (1392 aa)
CDC28Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant. (298 aa)
TYR1Prephenate dehydrogenase involved in tyrosine biosynthesis; expression is dependent on phenylalanine levels; Belongs to the prephenate/arogenate dehydrogenase family. (452 aa)
LEU2Beta-isopropylmalate dehydrogenase (IMDH); catalyzes the third step in the leucine biosynthesis pathway; can additionally catalyze the conversion of beta-ethylmalate into alpha-ketovalerate; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (364 aa)
CIT2Citrate synthase, peroxisomal isozyme involved in glyoxylate cycle; catalyzes condensation of acetyl coenzyme A and oxaloacetate to form citrate; expression is controlled by Rtg1p and Rtg2p transcription factors; SCF-Ucc1 regulates level of Cit2p to maintain citrate homeostasis; oxaloacetate-dependent positive feedback loop inhibits Cit2p ubiquitination; CIT2 has a paralog, CIT1, that arose from the whole genome duplication. (460 aa)
MBP1Transcription factor; involved in regulation of cell cycle progression from G1 to S phase, forms a complex with Swi6p that binds to MluI cell cycle box regulatory element in promoters of DNA synthesis genes. (833 aa)
TRP1Phosphoribosylanthranilate isomerase; catalyzes the third step in tryptophan biosynthesis; in 2004, the sequence of TRP1 from strain S228C was updated by changing the previously annotated internal STOP (TAA) to serine (TCA); enhances vegetative growth at low and high temperatures when used as an auxotrophic marker in strains such as W303. (224 aa)
URA3Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa)
PRB1Cerevisin; Vacuolar proteinase B (yscB) with H3 N-terminal endopeptidase activity; serine protease of the subtilisin family; involved in protein degradation in the vacuole and required for full protein degradation during sporulation; activity inhibited by Pbi2p; protein abundance increases in response to DNA replication stress; PRB1 has a paralog, YSP3, that arose from the whole genome duplication. (635 aa)
CAN1Plasma membrane arginine permease; requires phosphatidyl ethanolamine (PE) for localization, exclusively associated with lipid rafts; mutation confers canavanine resistance; CAN1 has a paralog, ALP1, that arose from the whole genome duplication. (590 aa)
RNR1Ribonucleoside-diphosphate reductase large chain 1; Major isoform of large subunit of ribonucleotide-diphosphate reductase; the RNR complex catalyzes rate-limiting step in dNTP synthesis, regulated by DNA replication and DNA damage checkpoint pathways via localization of small subunits; relative distribution to the nucleus increases upon DNA replication stress; RNR1 has a paralog, RNR3, that arose from the whole genome duplication. (888 aa)
SWI4Regulatory protein SWI4; DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair; Slt2p-independent regulator of cold growth; acetylation at two sites, K1016 and K1066, regulates interaction with Swi6p. (1093 aa)
ADE5,7Bifunctional purine biosynthetic protein ADE5,7; Enzyme of the 'de novo' purine nucleotide biosynthetic pathway; contains aminoimidazole ribotide synthetase and glycinamide ribotide synthetase activities; In the C-terminal section; belongs to the AIR synthase family. (802 aa)
CTT1Cytosolic catalase T; has a role in protection from oxidative damage by hydrogen peroxide. (562 aa)
CLB1G2/mitotic-specific cyclin-1; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB1 has a paralog, CLB2, that arose from the whole genome duplication. (471 aa)
CLB6S-phase entry cyclin-6; B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1; CLB6 has a paralog, CLB5, that arose from the whole genome duplication. (380 aa)
ADE3C-1-tetrahydrofolate synthase, cytoplasmic; Cytoplasmic trifunctional enzyme C1-tetrahydrofolate synthase; involved in single carbon metabolism and required for biosynthesis of purines, thymidylate, methionine, and histidine; null mutation causes auxotrophy for adenine and histidine. (946 aa)
BAR1Barrierpepsin; Aspartyl protease; secreted into the periplasmic space of mating type a cell; helps cells find mating partners; cleaves and inactivates alpha factor allowing cells to recover from alpha-factor-induced cell cycle arrest; Belongs to the peptidase A1 family. (587 aa)
PBS2MAP kinase kinase of the HOG signaling pathway; activated under severe osmotic stress; mitophagy-specific regulator; plays a role in regulating Ty1 transposition; Belongs to the protein kinase superfamily. STE Ser/Thr protein kinase family. MAP kinase kinase subfamily. (668 aa)
FAR1CDK inhibitor and nuclear anchor; during the cell cycle Far1p sequesters the GEF Cdc24p in the nucleus; phosphorylation by Cdc28p-Cln results in SCFCdc4 complex-mediated ubiquitin-dependent degradation, releasing Cdc24p for export and activation of GTPase Cdc42p; in response to pheromone, phosphorylation of Far1p by MAPK Fus3p results in association with, and inhibition of Cdc28p-Cln, as well as Msn5p mediated nuclear export of Far1p-Cdc24p, targeting Cdc24p to polarity sites. (830 aa)
MSN4Zinc finger protein MSN4; Stress-responsive transcriptional activator; activated in stochastic pulses of nuclear localization in response to various stress conditions; binds DNA at stress response elements of responsive genes, inducing gene expression; involved in diauxic shift. (630 aa)
SIC1Protein SIC1; Cyclin-dependent kinase inhibitor (CKI); inhibitor of Cdc28-Clb kinase complexes that controls G1/S phase transition, preventing premature S phase and ensuring genomic integrity; phosphorylated by Clb5/6-Cdk1 and Cln1/2-Cdk1 kinase which regulate timing of Sic1p degradation; phosphorylation targets Sic1p for SCF(CDC4)-dependent turnover; functional homolog of mammalian Kip1. (284 aa)
HOG1Mitogen-activated protein kinase involved in osmoregulation; controls global reallocation of RNAPII during osmotic shock; mediates recruitment/activation of RNAPII at Hot1p-dependent promoters; binds calmodulin; stimulates antisense transcription to activate CDC28; defines novel S-phase checkpoint with Mrc1p that prevent replication/transcription conflicts; nuclear form represses pseudohyphal growth; autophosphorylates; protein abundance increases under DNA replication stress; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. MAP kinase subfamily. HOG1 sub-subfamily. (435 aa)
MET17Homocysteine/cysteine synthase; O-acetyl homoserine-O-acetyl serine sulfhydrylase; required for Methionine and cysteine biosynthesis; Belongs to the trans-sulfuration enzymes family. (444 aa)
MSN2Zinc finger protein MSN2; Stress-responsive transcriptional activator; activated in stochastic pulses of nuclear localization in response to various stress conditions; binds DNA at stress response elements of responsive genes; relative distribution to nucleus increases upon DNA replication stress. (704 aa)
MCM1Transcription factor; involved in cell-type-specific transcription and pheromone response; plays a central role in the formation of both repressor and activator complexes; relocalizes to the cytosol in response to hypoxia. (286 aa)
CLN1G1/S-specific cyclin CLN1; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN1 has a paralog, CLN2, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (546 aa)
MSA1Activator of G1-specific transcription factors MBF and SBF; involved in regulation of the timing of G1-specific gene transcription and cell cycle initiation; localization is cell-cycle dependent and regulated by Cdc28p phosphorylation; MSA1 has a paralog, MSA2, that arose from the whole genome duplication. (629 aa)
WHI5G1-specific transcriptional repressor WHI5; Repressor of G1 transcription; binds to SCB binding factor (SBF) at SCB target promoters in early G1; dilution of Whi5p concentration during cell growth determines cell size; phosphorylation of Whi5p by the CDK, Cln3p/Cdc28p relieves repression and promoter binding by Whi5, and contributes to both the determination of critical cell size at START and cell fate; periodically expressed in G1; Belongs to the WHI5/NRM1 family. (295 aa)
ADE2Phosphoribosylaminoimidazole carboxylase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway; red pigment accumulates in mutant cells deprived of adenine. (571 aa)
HIS3Imidazoleglycerol-phosphate dehydratase; catalyzes the sixth step in histidine biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts; transcription is regulated by general amino acid control via Gcn4p. (220 aa)
CIP1Uncharacterized protein YPL014W; Cyclin-dependent kinase inhibitor; interacts with and inhibits the Cdc28p/Cln2p, G1/S phase cyclin-dependent kinase complex but not S-phase, or M-phase complexes; overexpression blocks cells in G1 phase and stabilizes the Cdc28p inhibitor Sic1p, while disruption accelerates the G1/S phase transition; phosphorylated during S phase in a Cdc28p-dependent manner; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and to the nucleus. (381 aa)
HHO1Histone H1, linker histone with roles in meiosis and sporulation; decreasing levels early in sporulation may promote meiosis, and increasing levels during sporulation facilitate compaction of spore chromatin; binds to promoters and within genes in mature spores; may be recruited by Ume6p to promoter regions, contributing to transcriptional repression outside of meiosis; suppresses DNA repair involving homologous recombination; Belongs to the histone H1/H5 family. (258 aa)
PEP4Saccharopepsin; Vacuolar aspartyl protease (proteinase A); required for posttranslational precursor maturation of vacuolar proteinases; important for protein turnover after oxidative damage; plays a protective role in acetic acid induced apoptosis; synthesized as a zymogen, self-activates. (405 aa)
CLN2G1/S-specific cyclin CLN2; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN2 has a paralog, CLN1, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (545 aa)
CLB2G2/mitotic-specific cyclin-2; B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB2 has a paralog, CLB1, that arose from the whole genome duplication. (491 aa)
CLB5S-phase entry cyclin-5; B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1 phase; CLB5 has a paralog, CLB6, that arose from the whole genome duplication. (435 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (10%) [HD]