STRINGSTRING
HTB2 HTB2 HTA2 HTA2 HHF1 HHF1 HHT1 HHT1 HTB1 HTB1 HTA1 HTA1 URA3 URA3 GLC7 GLC7 RAD6 RAD6 MET17 MET17 SIR3 SIR3 HHF2 HHF2 HHT2 HHT2 ADE2 ADE2 RAD53 RAD53
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
HTB2Histone H2B; core histone protein required for chromatin assembly and chromosome function; nearly identical to HTB1; Rad6p-Bre1p-Lge1p mediated ubiquitination regulates reassembly after DNA replication, transcriptional activation, meiotic DSB formation and H3 methylation. (131 aa)
HTA2Histone H2A; core histone protein required for chromatin assembly and chromosome function; one of two nearly identical (see also HTA1) subtypes; DNA damage-dependent phosphorylation by Mec1p facilitates DNA repair; acetylated by Nat4p. (132 aa)
HHF1Histone H4; core histone protein required for chromatin assembly and chromosome function; one of two identical histone proteins (see also HHF2); contributes to telomeric silencing; N-terminal domain involved in maintaining genomic integrity. (103 aa)
HHT1Histone H3; core histone protein required for chromatin assembly, part of heterochromatin-mediated telomeric and HM silencing; one of two identical histone H3 proteins (see HHT2); regulated by acetylation, methylation, and phosphorylation; H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage. (136 aa)
HTB1Histone H2B; core histone protein required for chromatin assembly and chromosome function; nearly identical to HTB2; Rad6p-Bre1p-Lge1p mediated ubiquitination regulates reassembly after DNA replication, transcriptional activation, meiotic DSB formation and H3 methylation. (131 aa)
HTA1Histone H2A; core histone protein required for chromatin assembly and chromosome function; one of two nearly identical subtypes (see also HTA2); DNA damage-dependent phosphorylation by Mec1p facilitates DNA repair; acetylated by Nat4p; N-terminally propionylated in vivo. (132 aa)
URA3Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa)
GLC7Serine/threonine-protein phosphatase PP1-2; Type 1 S/T protein phosphatase (PP1) catalytic subunit; involved in glycogen metabolism, sporulation and mitotic progression; interacts with multiple regulatory subunits; regulates actomyosin ring formation; subunit of CPF; recruited to mating projections by Afr1p interaction; regulates nucleocytoplasmic shuttling of Hxk2p; import into the nucleus is inhibited during spindle assembly checkpoint arrest; involved in dephosphorylating Rps6a/b and Bnr1p. (312 aa)
RAD6Ubiquitin-conjugating enzyme (E2); involved in postreplication repair as a heterodimer with Rad18p, regulation of K63 polyubiquitination in response to oxidative stress, DSBR and checkpoint control as a heterodimer with Bre1p, ubiquitin-mediated N-end rule protein degradation as a heterodimer with Ubr1p, ERAD with Ubr1p in the absence of canonical ER membrane ligases, and Rpn4p turnover as part of proteasome homeostasis, in complex with Ubr2p and Mub1p. (172 aa)
MET17Homocysteine/cysteine synthase; O-acetyl homoserine-O-acetyl serine sulfhydrylase; required for Methionine and cysteine biosynthesis; Belongs to the trans-sulfuration enzymes family. (444 aa)
SIR3Regulatory protein SIR3; Silencing protein; interacts with Sir2p, Sir4p, and histone H3/H4 tails to establish transcriptionally silent chromatin; required for spreading of silenced chromatin; recruited to chromatin through interaction with Rap1p; C-terminus assumes variant winged helix-turn-helix (wH) fold that mediates homodimerization, which is critical for holo-SIR complex loading; required for telomere hypercluster formation in quiescent yeast cells; has paralog ORC1 from whole genome duplication. (978 aa)
HHF2Histone H4; core histone protein required for chromatin assembly and chromosome function; one of two identical histone proteins (see also HHF1); contributes to telomeric silencing; N-terminal domain involved in maintaining genomic integrity. (103 aa)
HHT2Histone H3; core histone protein required for chromatin assembly, part of heterochromatin-mediated telomeric and HM silencing; one of two identical histone H3 proteins (see HHT1); regulated by acetylation, methylation, and phosphorylation; H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage. (136 aa)
ADE2Phosphoribosylaminoimidazole carboxylase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway; red pigment accumulates in mutant cells deprived of adenine. (571 aa)
RAD53Serine/threonine-protein kinase RAD53; DNA damage response protein kinase; required for cell-cycle arrest, regulation of copper genes in response to DNA damage; phosphorylates nuclear pores to counteract gene gating, preventing aberrant transitions at forks approaching transcribed genes; activates downstream kinase Dun1p; differentially senses mtDNA depletion, mitochondrial ROS; relocalizes to cytosol under hypoxia; human homolog CHEK2 implicated in breast cancer can complement yeast null mutant; Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. CHEK2 subfamily. (821 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (28%) [HD]