STRINGSTRING
NQM1 NQM1 CDC19 CDC19 GAL1 GAL1 TKL2 TKL2 PGK1 PGK1 TPI1 TPI1 URA3 URA3 YEN1 YEN1 GPP2 GPP2 TDH3 TDH3 GPP1 GPP1 SGA1 SGA1 TDH1 TDH1 RPE1 RPE1 TDH2 TDH2 DAN1 DAN1 TAL1 TAL1 PYK2 PYK2 TKL1 TKL1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NQM1Transaldolase of unknown function; transcription is repressed by Mot1p and induced by alpha-factor and during diauxic shift; NQM1 has a paralog, TAL1, that arose from the whole genome duplication. (333 aa)
CDC19Pyruvate kinase; functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to pyruvate, the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration; regulated via allosteric activation by fructose bisphosphate; CDC19 has a paralog, PYK2, that arose from the whole genome duplication. (500 aa)
GAL1Galactokinase; phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in the first step of galactose catabolism; expression regulated by Gal4p; human homolog GALK2 complements yeast null mutant; GAL1 has a paralog, GAL3, that arose from the whole genome duplication. (528 aa)
TKL2Transketolase; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; TKL2 has a paralog, TKL1, that arose from the whole genome duplication. (681 aa)
PGK13-phosphoglycerate kinase; catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis. (416 aa)
TPI1Triose phosphate isomerase, abundant glycolytic enzyme; mRNA half-life is regulated by iron availability; transcription is controlled by activators Reb1p, Gcr1p, and Rap1p through binding sites in the 5' non-coding region; inhibition of Tpi1p activity by PEP (phosphoenolpyruvate) stimulates redox metabolism in respiring cells; E104D mutation in human homolog TPI1 causes a rare autosomal disease; human TPI1 can complement yeast null mutant. (248 aa)
URA3Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa)
YEN1Holliday junction resolvase; promotes template switching during break-induced replication (BIR), causing non-reciprocal translocations (NRTs); localization is cell-cycle dependent and regulated by Cdc28p phosphorylation; homolog of human GEN1; similar to S. cerevisiae endonuclease Rth1p. (759 aa)
GPP2Glycerol-1-phosphate phosphohydrolase 2; DL-glycerol-3-phosphate phosphatase involved in glycerol biosynthesis; also known as glycerol-1-phosphatase; induced in response to hyperosmotic or oxidative stress, and during diauxic shift; GPP2 has a paralog, GPP1, that arose from the whole genome duplication; Belongs to the HAD-like hydrolase superfamily. DOG/GPP family. (250 aa)
TDH3Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bacteria; binds AU-rich RNA. (332 aa)
GPP1Glycerol-1-phosphate phosphohydrolase 1; Constitutively expressed DL-glycerol-3-phosphate phosphatase; also known as glycerol-1-phosphatase; involved in glycerol biosynthesis, induced in response to both anaerobic and osmotic stress; GPP1 has a paralog, GPP2, that arose from the whole genome duplication. (250 aa)
SGA1Intracellular sporulation-specific glucoamylase; involved in glycogen degradation; induced during starvation of a/a diploids late in sporulation, but dispensable for sporulation. (549 aa)
TDH1Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria. (332 aa)
RPE1D-ribulose-5-phosphate 3-epimerase; catalyzes a reaction in the non-oxidative part of the pentose-phosphate pathway; mutants are sensitive to oxidative stress. (238 aa)
TDH2Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication. (332 aa)
DAN1Cell wall mannoprotein; has similarity to Tir1p, Tir2p, Tir3p, and Tir4p; expressed under anaerobic conditions, completely repressed during aerobic growth. (298 aa)
TAL1Transaldolase, enzyme in the non-oxidative pentose phosphate pathway; converts sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to erythrose 4-phosphate and fructose 6-phosphate; TAL1 has a paralog, NQM1, that arose from the whole genome duplication. (335 aa)
PYK2Pyruvate kinase; appears to be modulated by phosphorylation; transcription repressed by glucose, and Pyk2p may be active under low glycolytic flux; PYK2 has a paralog, CDC19, that arose from the whole genome duplication. (506 aa)
TKL1Transketolase; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; TKL1 has a paralog, TKL2, that arose from the whole genome duplication. (680 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (12%) [HD]