STRINGSTRING
GPH1 GPH1 SCD6 SCD6 THI22 THI22 HSP82 HSP82 RPS9A RPS9A FRE3 FRE3 GDH1 GDH1 SFG1 SFG1 ADE2 ADE2 SKI7 SKI7 RPB11 RPB11 AGA1 AGA1 MFA2 MFA2 DCP2 DCP2 GAD1 GAD1 NAM7 NAM7 LSM3 LSM3 DIF1 DIF1 SKI2 SKI2 TMA10 TMA10 RPS28B RPS28B GTT2 GTT2 NTG1 NTG1 ARL1 ARL1 HIS4 HIS4 CHA1 CHA1 CIT2 CIT2 PGK1 PGK1 CDC39 CDC39 RPP1A RPP1A DHH1 DHH1 HXT6 HXT6 YRA1 YRA1 EDC3 EDC3 URA3 URA3 EDC2 EDC2 GPP2 GPP2 SER3 SER3 BUR6 BUR6 HXK1 HXK1 SDS23 SDS23 YGL117W YGL117W XRN1 XRN1 HOS2 HOS2 EDC1 EDC1 NQM1 NQM1 NMD2 NMD2 UPF3 UPF3 RTC3 RTC3 TMA19 TMA19 SUC2 SUC2 NIT1 NIT1 DAL3 DAL3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GPH1Glycogen phosphorylase required for the mobilization of glycogen; non-essential; regulated by cyclic AMP-mediated phosphorylation; phosphorylation by Cdc28p may coordinately regulate carbohydrate metabolism and the cell cycle; expression is regulated by stress-response elements and by the HOG MAP kinase pathway. (902 aa)
SCD6Protein SCD6; Repressor of translation initiation; binds eIF4G through its RGG domain and inhibits recruitment of the preinitiation complex; also contains an Lsm domain; may have a role in RNA processing; overproduction suppresses null mutation in clathrin heavy chain gene CHC1; forms cytoplasmic foci upon DNA replication stress. (349 aa)
THI22Thiamine biosynthesis protein THI22; Protein with similarity to hydroxymethylpyrimidine phosphate kinases; member of a gene family with THI20 and THI21; not required for thiamine biosynthesis; SWAT-GFP and mCherry fusion proteins localize to the endoplasmic reticulum and vacuole respectively. (572 aa)
HSP82ATP-dependent molecular chaperone HSP82; Hsp90 chaperone; redundant in function with Hsc82p; required for pheromone signaling, negative regulation of Hsf1p; docks with Tom70p for mitochondrial preprotein delivery; promotes telomerase DNA binding, nucleotide addition; protein abundance increases in response to DNA replication stress; contains two acid-rich unstructured regions that promote solubility of chaperone-substrate complexes; HSP82 has a paralog, HSC82, that arose from the whole genome duplication. (709 aa)
RPS9AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S9 and bacterial S4; RPS9A has a paralog, RPS9B, that arose from the whole genome duplication. (197 aa)
FRE3Ferric reductase transmembrane component 3; Ferric reductase; reduces siderophore-bound iron prior to uptake by transporters; expression induced by low iron levels; Belongs to the ferric reductase (FRE) family. (711 aa)
GDH1NADP(+)-dependent glutamate dehydrogenase; synthesizes glutamate from ammonia and alpha-ketoglutarate; rate of alpha-ketoglutarate utilization differs from Gdh3p; expression regulated by nitrogen and carbon sources; GDH1 has a paralog, GDH3, that arose from the whole genome duplication. (454 aa)
SFG1Nuclear protein putative transcription factor; required for growth of superficial pseudohyphae (which do not invade the agar substrate) but not for invasive pseudohyphal growth; may act together with Phd1p; potential Cdc28p substrate. (346 aa)
ADE2Phosphoribosylaminoimidazole carboxylase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway; red pigment accumulates in mutant cells deprived of adenine. (571 aa)
SKI7Superkiller protein 7; GTP-binding protein that couples the Ski complex and exosome; putative pseudo-translational GTPase involved in 3'-to-5' mRNA decay pathway; interacts with both the cytoplasmic exosome and the Ski complex; eRF3-like domain targets nonstop mRNA for degradation; null mutants have a superkiller phenotype; SKI7 has a paralog, HBS1, that arose from the whole genome duplication; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. (747 aa)
RPB11RNA polymerase II subunit B12.5; part of central core; similar to Rpc19p and bacterial alpha subunit. (120 aa)
AGA1Anchorage subunit of a-agglutinin of a-cells; highly O-glycosylated protein with N-terminal secretion signal and C-terminal signal for addition of GPI anchor to cell wall, linked to adhesion subunit Aga2p via two disulfide bonds; AGA1 has a paralog, FIG2, that arose from the whole genome duplication. (725 aa)
MFA2Mating pheromone a-factor; made by a cells; interacts with alpha cells to induce cell cycle arrest and other responses leading to mating; biogenesis involves C-terminal modification, N-terminal proteolysis, and export; also encoded by MFA1. (38 aa)
DCP2m7GpppN-mRNA hydrolase; Catalytic subunit of Dcp1p-Dcp2p decapping enzyme complex; removes 5' cap structure from mRNAs prior to their degradation; also enters nucleus and positively regulates transcription initiation; nudix hydrolase family member; forms cytoplasmic foci upon DNA replication stress; human homolog DCP2 complements yeast dcp2 thermosensitive mutant. (970 aa)
GAD1Glutamate decarboxylase; converts glutamate into gamma-aminobutyric acid (GABA) during glutamate catabolism; involved in response to oxidative stress. (585 aa)
NAM7ATP-dependent RNA helicase of the SFI superfamily; involved in nonsense mediated mRNA decay; required for efficient translation termination at nonsense codons and targeting of NMD substrates to P-bodies; binds to the small ribosomal subunit via an interaction with Rps26; forms cytoplasmic foci upon DNA replication stress. (971 aa)
LSM3U6 snRNA-associated Sm-like protein LSm3; Lsm (Like Sm) protein; part of heteroheptameric complexes (Lsm2p-7p and either Lsm1p or 8p): cytoplasmic Lsm1p complex involved in mRNA decay; nuclear Lsm8p complex part of U6 snRNP and possibly involved in processing tRNA, snoRNA, and rRNA; protein increases in abundance and relocalizes from nucleus to cytoplasmic foci upon DNA replication stress. (89 aa)
DIF1Damage-regulated import facilitator 1; Protein that regulates nuclear localization of Rnr2p and Rnr4p; phosphorylated by Dun1p in response to DNA damage and degraded; N-terminal half shows similarity to S. pombe Spd1 protein; DIF1 has a paralog, SML1, that arose from the whole genome duplication. (133 aa)
SKI2Antiviral helicase SKI2; Ski complex component and putative RNA helicase; mediates 3'-5' RNA degradation by the cytoplasmic exosome; null mutants have superkiller phenotype of increased viral dsRNAs and are synthetic lethal with mutations in 5'-3' mRNA decay; mutations in the human ortholog, SKIV2L, causes Syndromic diarrhea/Trichohepatoenteric (SD/THE) syndrome; Belongs to the helicase family. SKI2 subfamily. (1287 aa)
TMA10Translation machinery-associated protein 10; Protein of unknown function that associates with ribosomes; protein abundance increases in response to DNA replication stress; TMA10 has a paralog, STF2, that arose from the whole genome duplication. (86 aa)
RPS28BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S28, no bacterial homolog; has an extraribosomal function in autoregulation, in which Rps28Bp binds to a decapping complex via Edc3p, which then binds to RPS28B mRNA leading to its decapping and degradation; RPS28B has a paralog, RPS28A, that arose from the whole genome duplication. (67 aa)
GTT2Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, and Grx2p; protein abundance increases in response to DNA replication stress; Belongs to the GST superfamily. (233 aa)
NTG1Endonuclease III homolog 1; DNA N-glycosylase and apurinic/apyrimidinic (AP) lyase; involved in base excision repair; acts in both nucleus and mitochondrion; creates a double-strand break at mtDNA origins that stimulates replication in response to oxidative stress; required for maintaining mitochondrial genome integrity; NTG1 has a paralog, NTG2, that arose from the whole genome duplication; Belongs to the Nth/MutY family. (399 aa)
ARL1ADP-ribosylation factor-like protein 1; Soluble GTPase with a role in regulation of membrane traffic; regulates potassium influx; role in membrane organization at trans-Golgi network; required for delivery of Atg9p to the phagophore assembly site during autophagy under high temperature stress; required with Ypt6p for starvation-induced autophagy; required for the CVT pathway under non-starvation conditions; G protein of the Ras superfamily, similar to ADP-ribosylation factor. (183 aa)
HIS4Histidine biosynthesis trifunctional protein; Multifunctional enzyme containing phosphoribosyl-ATP pyrophosphatase; phosphoribosyl-AMP cyclohydrolase, and histidinol dehydrogenase activities; catalyzes the second, third, ninth and tenth steps in histidine biosynthesis. (799 aa)
CHA1Catabolic L-serine/threonine dehydratase; Catabolic L-serine (L-threonine) deaminase; catalyzes the degradation of both L-serine and L-threonine; required to use serine or threonine as the sole nitrogen source, transcriptionally induced by serine and threonine; Belongs to the serine/threonine dehydratase family. (360 aa)
CIT2Citrate synthase, peroxisomal isozyme involved in glyoxylate cycle; catalyzes condensation of acetyl coenzyme A and oxaloacetate to form citrate; expression is controlled by Rtg1p and Rtg2p transcription factors; SCF-Ucc1 regulates level of Cit2p to maintain citrate homeostasis; oxaloacetate-dependent positive feedback loop inhibits Cit2p ubiquitination; CIT2 has a paralog, CIT1, that arose from the whole genome duplication. (460 aa)
PGK13-phosphoglycerate kinase; catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis. (416 aa)
CDC39General negative regulator of transcription subunit 1; Subunit of the CCR4-NOT1 core complex; this complex has multiple roles in the regulation of mRNA levels including regulation of transcription and destabilization of mRNA by deadenylation; basal transcription factor that increases initiation and elongation; activates the ATPase activity of Dhh1p, resulting in processing body disassembly. (2108 aa)
RPP1A60S acidic ribosomal protein P1-alpha; Ribosomal stalk protein P1 alpha; involved in the interaction between translational elongation factors and the ribosome; free (non-ribosomal) P1 stimulates the phosphorylation of the eIF2 alpha subunit (Sui2p) by Gcn2p; accumulation of P1 in the cytoplasm is regulated by phosphorylation and interaction with the P2 stalk component. (106 aa)
DHH1Cytoplasmic DEAD-box helicase, stimulates mRNA decapping; coordinates distinct steps in mRNA function and decay, interacting with both decapping and deadenylase complexes; role in translational repression, mRNA decay, and possibly mRNA export; interacts and cooperates with Ngr1p to promote specific mRNA decay; ATP- and RNA-bound form promotes processing body (PB) assembly, while ATPase stimulation by Not1p promotes PB disassembly; forms cytoplasmic foci on replication stress; Belongs to the DEAD box helicase family. DDX6/DHH1 subfamily. (506 aa)
HXT6High-affinity glucose transporter; member of the major facilitator superfamily, nearly identical to Hxt7p, expressed at high basal levels relative to other HXTs, repression of expression by high glucose requires SNF3; HXT6 has a paralog, HXT1, that arose from the whole genome duplication; Belongs to the major facilitator superfamily. Sugar transporter (TC 2.A.1.1) family. (570 aa)
YRA1Nuclear polyadenylated RNA-binding protein; required for export of poly(A)+ mRNA from the nucleus; proposed to couple mRNA export with 3' end processing via its interactions with Mex67p and Pcf11p; interacts with DBP2; inhibits the helicase activity of Dbp2; functionally redundant with Yra2p, another REF family member. (226 aa)
EDC3Enhancer of mRNA-decapping protein 3; Non-essential conserved protein with a role in mRNA decapping; specifically affects the function of the decapping enzyme Dcp1p; mediates decay of the RPS28B mRNA via binding to both Rps28Bp (or Rps28Ap) and the RPS28B mRNA; mediates decay of the YRA1 mRNA by a different, translation-independent mechanism; localizes to cytoplasmic mRNA processing bodies; forms cytoplasmic foci upon DNA replication stress. (551 aa)
URA3Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa)
EDC2Enhancer of mRNA-decapping protein 2; RNA-binding protein that directly activates mRNA decapping; binds mRNA substrate and enhances activity of decapping proteins Dcp1p and Dcp2p; has a role in translation during heat stress; protein increases in abundance and relocalizes to nucleolus and to nuclear foci upon DNA replication stress; EDC2 has a paralog, EDC1, that arose from the whole genome duplication. (145 aa)
GPP2Glycerol-1-phosphate phosphohydrolase 2; DL-glycerol-3-phosphate phosphatase involved in glycerol biosynthesis; also known as glycerol-1-phosphatase; induced in response to hyperosmotic or oxidative stress, and during diauxic shift; GPP2 has a paralog, GPP1, that arose from the whole genome duplication; Belongs to the HAD-like hydrolase superfamily. DOG/GPP family. (250 aa)
SER3D-3-phosphoglycerate dehydrogenase 1; 3-phosphoglycerate dehydrogenase and alpha-ketoglutarate reductase; 3PG dehydrogenase that catalyzes the first step in serine and glycine biosynthesis; also functions as an alpha-ketoglutarate reductase, converting alpha-ketoglutarate to D-2-hydroxyglutarate (D-2HG); localizes to the cytoplasm; SER3 has a paralog, SER33, that arose from the whole genome duplication. (469 aa)
BUR6Subunit of a heterodimeric NC2 transcription regulator complex; complex binds to TBP and can repress transcription by preventing preinitiation complex assembly or stimulate activated transcription; homologous to human NC2alpha; complex also includes Ncb2p; bur6 ncb2 double mutation is functionally complemented by coexpression of human DRAP1 and DR1, although the single bur6 mutation is not complemented by its ortholog DRAP1. (142 aa)
HXK1Hexokinase-1; Hexokinase isoenzyme 1; a cytosolic protein that catalyzes phosphorylation of glucose during glucose metabolism; expression is highest during growth on non-glucose carbon sources; glucose-induced repression involves hexokinase Hxk2p; HXK1 has a paralog, HXK2, that arose from the whole genome duplication. (485 aa)
SDS23Protein involved in cell separation during budding; one of two S. cerevisiae homologs (Sds23p and Sds24p) of the S. pombe Sds23 protein, which is implicated in APC/cyclosome regulation; SDS23 has a paralog, SDS24, that arose from the whole genome duplication. (527 aa)
YGL117WUncharacterized protein YGL117W; Putative protein of unknown function. (265 aa)
XRN15'-3' exoribonuclease 1; Evolutionarily-conserved 5'-3' exonuclease; component of cytoplasmic processing (P) bodies involved in mRNA decay; also enters the nucleus and positively regulates transcription initiation and elongation; plays a role in microtubule-mediated processes, filamentous growth, ribosomal RNA maturation, and telomere maintenance; activated by the scavenger decapping enzyme Dcs1p. (1528 aa)
HOS2Histone deacetylase and subunit of Set3 and Rpd3L complexes; required for gene activation via specific deacetylation of lysines in H3 and H4 histone tails; subunit of the Set3 complex, a meiotic-specific repressor of sporulation specific genes that contains deacetylase activity; co-localizes with Cmr1p in nuclear foci in response to DNA damage by MMS. (452 aa)
EDC1Enhancer of mRNA-decapping protein 1; RNA-binding protein that activates mRNA decapping directly; binds to mRNA substrate and enhances activity of decapping proteins Dcp1p and Dcp2p; has a role in translation during heat stress; protein becomes more abundant and forms cytoplasmic foci in response to DNA replication stress; EDC1 has a paralog, EDC2, that arose from the whole genome duplication. (175 aa)
NQM1Transaldolase of unknown function; transcription is repressed by Mot1p and induced by alpha-factor and during diauxic shift; NQM1 has a paralog, TAL1, that arose from the whole genome duplication. (333 aa)
NMD2Protein involved in the nonsense-mediated mRNA decay (NMD) pathway; interacts with Nam7p and Upf3p; involved in telomere maintenance. (1089 aa)
UPF3Component of the nonsense-mediated mRNA decay (NMD) pathway; along with Nam7p and Nmd2p; involved in decay of mRNA containing nonsense codons; involved in telomere maintenance; Belongs to the RENT3 family. (387 aa)
RTC3Restriction of telomere capping protein 3; Protein of unknown function involved in RNA metabolism; has structural similarity to SBDS, the human protein mutated in Shwachman-Diamond Syndrome (the yeast SBDS ortholog = SDO1); null mutation suppresses cdc13-1 temperature sensitivity; protein abundance increases in response to DNA replication stress. (111 aa)
TMA19Protein that associates with ribosomes; homolog of translationally controlled tumor protein; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and relocates to the mitochondrial outer surface upon oxidative stress; Belongs to the TCTP family. (167 aa)
SUC2Invertase; sucrose hydrolyzing enzyme; a secreted, glycosylated form is regulated by glucose repression, and an intracellular, nonglycosylated enzyme is produced constitutively. (532 aa)
NIT1Putative nitrilase-like protein NIT1; Nitrilase; member of the nitrilase branch of the nitrilase superfamily; in closely related species and other S. cerevisiae strain backgrounds YIL164C and adjacent ORF, YIL165C, likely constitute a single ORF encoding a nitrilase gene; Belongs to the carbon-nitrogen hydrolase superfamily. Nitrilase family. (199 aa)
DAL3Ureidoglycolate lyase; converts ureidoglycolate to glyoxylate and urea in the third step of allantoin degradation; expression is sensitive to nitrogen catabolite repression; this enzyme is sometimes referred to "ureidoglycolate hydrolase" but should not be confused with the Arabidopsis thaliana ureidoglycolate hydrolase enzyme which converts ureidoglycolate to glyoxylate, ammonia and carbon dioxide. (195 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (22%) [HD]