Your Input: | |||||
RPL23A | Ribosomal 60S subunit protein L23A; homologous to mammalian ribosomal protein L23 and bacterial L14; RPL23A has a paralog, RPL23B, that arose from the whole genome duplication. (137 aa) | ||||
RPL4A | Ribosomal 60S subunit protein L4A; N-terminally acetylated; homologous to mammalian ribosomal protein L4 and bacterial L4; RPL4A has a paralog, RPL4B, that arose from the whole genome duplication. (362 aa) | ||||
RPS11B | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S11 and bacterial S17; RPS11B has a paralog, RPS11A, that arose from the whole genome duplication. (156 aa) | ||||
CMD1 | Calmodulin; Ca2+ binding protein that regulates Ca2+ independent processes (mitosis, bud growth, actin organization, endocytosis, etc.) and Ca2+ dependent processes (stress-activated pathways), targets include Nuf1p, Myo2p and calcineurin; binds to the Hog1p MAPK in response to hyperosmotic stress; potentiates membrane tubulation and constriction mediated by the Rvs161p-Rvs167p complex; human CALM1 or CALM2 functionally complement repression induced inviability. (147 aa) | ||||
RPS6B | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S6, no bacterial homolog; phosphorylated on S233 by Ypk3p in a TORC1-dependent manner, and on S232 in a TORC1/2-dependent manner by Ypk1/2/3p; RPS6B has a paralog, RPS6A, that arose from the whole genome duplication. (236 aa) | ||||
ENP1 | Protein associated with U3 and U14 snoRNAs; required for pre-rRNA processing and 40S ribosomal subunit synthesis; localized in the nucleus and concentrated in the nucleolus; human BYSL functionally complements the heat sensitivity of an enp1 ts mutant; Belongs to the bystin family. (483 aa) | ||||
KRR1 | KRR1 small subunit processome component; Nucleolar protein required for rRNA synthesis and ribosomal assembly; required for the synthesis of 18S rRNA and for the assembly of 40S ribosomal subunit; essential gene; Belongs to the KRR1 family. (316 aa) | ||||
RPS14A | Protein component of the small (40S) ribosomal subunit; required for ribosome assembly and 20S pre-rRNA processing; mutations confer cryptopleurine resistance; homologous to mammalian ribosomal protein S14 and bacterial S11; RPS14A has a paralog, RPS14B, that arose from the whole genome duplication. (137 aa) | ||||
SYO1 | Synchronized import protein 1; Transport adaptor or symportin; facilitates synchronized nuclear coimport of the two 5S-rRNA binding proteins Rpl5p and Rpl11p; binds to nascent Rpl5p during translation; required for biogenesis of the large ribosomal subunit; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and nucleus. (620 aa) | ||||
RPS16B | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S16 and bacterial S9; RPS16B has a paralog, RPS16A, that arose from the whole genome duplication. (143 aa) | ||||
FAP7 | Adenylate kinase isoenzyme 6 homolog FAP7; Essential NTPase required for small ribosome subunit synthesis; mediates processing of the 20S pre-rRNA at site D in the cytoplasm but associates only transiently with 43S preribosomes via Rps14p; complex with Rps14 is conserved between humans, yeast, and arches; may be the endonuclease for site D; depletion leads to accumulation of pre-40S ribosomes in 80S-like ribosomes; human TAF9 functionally complements the lethality of the null mutation. (197 aa) | ||||
RPL4B | Ribosomal 60S subunit protein L4B; homologous to mammalian ribosomal protein L4 and bacterial L4; RPL4B has a paralog, RPL4A, that arose from the whole genome duplication. (362 aa) | ||||
ACL4 | Specific assembly chaperone for ribosomal protein Rpl4p; binds to an evolutionarily conserved surface extension of nascent Rpl4p and chaperones Rpl4p until its assembly into the pre-ribosome; transcriptionally co-regulated with rRNA and ribosome biosynthesis genes; Belongs to the ACL4 family. (387 aa) | ||||
URA3 | Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa) | ||||
KAP123 | Importin subunit beta-4; Karyopherin beta; mediates nuclear import of ribosomal proteins prior to assembly into ribosomes and import of histones H3 and H4; localizes to the nuclear pore, nucleus, and cytoplasm; exhibits genetic interactions with RAI1. (1113 aa) | ||||
RPL23B | Ribosomal 60S subunit protein L23B; homologous to mammalian ribosomal protein L23 and bacterial L14; RPL23B has a paralog, RPL23A, that arose from the whole genome duplication. (137 aa) | ||||
RPL30 | Ribosomal 60S subunit protein L30; involved in pre-rRNA processing in the nucleolus; autoregulates splicing of its transcript; homologous to mammalian ribosomal protein L30, no bacterial homolog. (105 aa) | ||||
RPS2 | Protein component of the small (40S) subunit; essential for control of translational accuracy; phosphorylation by C-terminal domain kinase I (CTDK-I) enhances translational accuracy; methylated on one or more arginine residues by Hmt1p; homologous to mammalian ribosomal protein S2 and bacterial S5. (254 aa) | ||||
RPL1B | Ribosomal 60S subunit protein L1B; N-terminally acetylated; homologous to mammalian ribosomal protein L10A and bacterial L1; RPL1B has a paralog, RPL1A, that arose from the whole genome duplication; rpl1a rpl1b double null mutation is lethal. (217 aa) | ||||
RPS26A | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S26, no bacterial homolog; RPS26A has a paralog, RPS26B, that arose from the whole genome duplication; human homolog can partially complement an RPS26A, RPS26B double null mutant; mutations in the human gene are associated with Diamond-Blackfan anemia. (119 aa) | ||||
KAP114 | Importin subunit beta-5; Karyopherin, responsible for nuclear import of specific proteins; cargoes include Spt15p, Sua7p, histones H2A and H2B, and Nap1p; amino terminus shows similarity to those of other importins, particularly Cse1p; localization is primarily nuclear; function is regulated by sumoylation; protein abundance increases in response to DNA replication stress. (1004 aa) | ||||
TDH3 | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bacteria; binds AU-rich RNA. (332 aa) | ||||
RPS0A | Ribosomal 40S subunit protein S0A; required for maturation of 18S rRNA along with Rps0Bp; deletion of either RPS0 gene reduces growth rate, deletion of both genes is lethal; homologous to human ribosomal protein SA and bacterial S2; RPS0A has a paralog, RPS0B, that arose from the whole genome duplication. (252 aa) | ||||
RPL42B | Ribosomal 60S subunit protein L42B; required for propagation of the killer toxin-encoding M1 double-stranded RNA satellite of the L-A double-stranded RNA virus; homologous to mammalian ribosomal protein L36A, no bacterial homolog; RPL42B has a paralog, RPL42A, that arose from the whole genome duplication. (106 aa) | ||||
RPS4B | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S4, no bacterial homolog; RPS4B has a paralog, RPS4A, that arose from the whole genome duplication. (261 aa) | ||||
TDH1 | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria. (332 aa) | ||||
RPL39 | Ribosomal 60S subunit protein L39; required for ribosome biogenesis; loss of both Rpl31p and Rpl39p confers lethality; also exhibits genetic interactions with SIS1 and PAB1; homologous to mammalian ribosomal protein L39, no bacterial homolog. (51 aa) | ||||
RPS14B | Protein component of the small (40S) ribosomal subunit; required for ribosome assembly and 20S pre-rRNA processing; mutations confer cryptopleurine resistance; homologous to mammalian ribosomal protein S14 and bacterial S11; RPS14B has a paralog, RPS14A, that arose from the whole genome duplication. (138 aa) | ||||
TDH2 | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication. (332 aa) | ||||
RPS5 | Protein component of the small (40S) ribosomal subunit; least basic of non-acidic ribosomal proteins; phosphorylated in vivo; essential for viability; homologous to mammalian ribosomal protein S5 and bacterial S7. (225 aa) | ||||
LTV1 | Protein LTV1; Component of the GSE complex; GSE is required for proper sorting of amino acid permease Gap1p; required for ribosomal small subunit export from nucleus; required for growth at low temperature; Belongs to the LTV1 family. (463 aa) | ||||
YAR1 | Ankyrin repeat-containing protein YAR1; Ankyrin-repeat containing, nucleocytoplasmic shuttling chaperone; prevents aggregation of Rps3p in the cytoplasm, associates with nascent Rps3p during its translation in the cytoplasm and delivers it to the 90S in the nucleus; required for 40S ribosomal subunit export, biogenesis and adaptation to osmotic and oxidative stress; expression repressed by heat shock. (200 aa) | ||||
RPL1A | Ribosomal 60S subunit protein L1A; N-terminally acetylated; homologous to mammalian ribosomal protein L10A and bacterial L1; RPL1A has a paralog, RPL1B, that arose from the whole genome duplication; rpl1a rpl1b double null mutation is lethal. (217 aa) | ||||
RPL5 | Ribosomal 60S subunit protein L5; nascent Rpl5p is bound by specific chaperone Syo1p during translation; homologous to mammalian ribosomal protein L5 and bacterial L18; binds 5S rRNA and is required for 60S subunit assembly; Belongs to the universal ribosomal protein uL18 family. (297 aa) | ||||
RPS6A | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S6, no bacterial homolog; phosphorylated on S233 by Ypk3p in a TORC1-dependent manner, and on S232 in a TORC1/2-dependent manner by Ypk1/2/3p; RPS6A has a paralog, RPS6B, that arose from the whole genome duplication. (236 aa) | ||||
RPS9A | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S9 and bacterial S4; RPS9A has a paralog, RPS9B, that arose from the whole genome duplication. (197 aa) | ||||
RRP12 | Protein required for export of the ribosomal subunits; associates with the RNA components of the pre-ribosomes; has a role in nuclear import in association with Pse1p; also plays a role in the cell cycle and the DNA damage response; contains HEAT-repeats. (1228 aa) | ||||
RPS12 | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S12, no bacterial homolog. (143 aa) | ||||
NOP58 | Nucleolar protein 58; Protein involved in producing mature rRNAs and snoRNAs; involved in pre-rRNA processing, 18S rRNA synthesis, and snoRNA synthesis; component of the small subunit processome complex, which is required for processing of pre-18S rRNA. (511 aa) | ||||
ADE2 | Phosphoribosylaminoimidazole carboxylase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway; red pigment accumulates in mutant cells deprived of adenine. (571 aa) | ||||
RPL3 | Ribosomal 60S subunit protein L3; homologous to mammalian ribosomal protein L3 and bacterial L3; plays an important role in function of eIF5B in stimulating 3' end processing of 18S rRNA in context of 80S ribosomes that have not yet engaged in translation; involved in replication and maintenance of killer double stranded RNA virus; Belongs to the universal ribosomal protein uL3 family. (387 aa) | ||||
RPS19A | Protein component of the small (40S) ribosomal subunit; required for assembly and maturation of pre-40 S particles; homologous to mammalian ribosomal protein S19, no bacterial homolog; mutations in human RPS19 are associated with Diamond Blackfan anemia; RPS19A has a paralog, RPS19B, that arose from the whole genome duplication. (144 aa) | ||||
RPL18A | Ribosomal 60S subunit protein L18A; intron of RPL18A pre-mRNA forms stem-loop structures that are a target for Rnt1p cleavage leading to degradation; homologous to mammalian ribosomal protein L18, no bacterial homolog; RPL18A has a paralog, RPL18B, that arose from the whole genome duplication. (186 aa) | ||||
RPS15 | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S15 and bacterial S19. (142 aa) | ||||
TSR4 | 20S rRNA accumulation protein 4; Cytoplasmic protein required for correct processing of 20S pre-rRNA; protein required for processing of the 20S pre-rRNA at site D to generate mature 18S rRNA; essential gene in S288C background but not in CEN.PK2. (408 aa) | ||||
HTZ1 | Histone variant H2AZ; exchanged for histone H2A in nucleosomes by the SWR1 complex; involved in transcriptional regulation through prevention of the spread of silent heterochromatin; Htz1p-containing nucleosomes facilitate RNA Pol II passage by affecting correct assembly and modification status of RNA Pol II elongation complexes and by favoring efficient nucleosome remodeling. (134 aa) | ||||
KRI1 | Protein KRI1; Essential nucleolar protein required for 40S ribosome biogenesis; associate with snR30; physically and functionally interacts with Krr1p; Belongs to the KRI1 family. (591 aa) | ||||
RPL18B | Ribosomal 60S subunit protein L18B; homologous to mammalian ribosomal protein L18, no bacterial homolog; RPL18B has a paralog, RPL18A, that arose from the whole genome duplication. (186 aa) | ||||
RIO2 | Serine/threonine-protein kinase RIO2; Essential serine kinase involved in the processing of 20S pre-rRNA; involved in the processing of the 20S pre-rRNA into mature 18S rRNA; has similarity to Rio1p. (425 aa) | ||||
SRP1 | Importin subunit alpha; Karyopherin alpha homolog; forms a dimer with karyopherin beta Kap95p to mediate import of nuclear proteins, binds the nuclear localization signal of the substrate during import; involved in cotranslational protein degradation; binds ribosome-bound nascent polypeptides; Srp1p and Sts1p couple proteasomes to nascent polypeptides emerging from the ribosome for cotranslational degradation. (542 aa) | ||||
RPS3 | Protein component of the small (40S) ribosomal subunit; has apurinic/apyrimidinic (AP) endonuclease activity; essential for viability; nascent Rps3p is bound by specific chaperone Yar1p during translation; homologous to mammalian ribosomal protein S3 and bacterial S3. (240 aa) | ||||
RPL42A | Ribosomal 60S subunit protein L42A; homologous to mammalian ribosomal protein L36A, no bacterial homolog; RPL42A has a paralog, RPL42B, that arose from the whole genome duplication. (106 aa) | ||||
KRE33 | RNA cytidine acetyltransferase; Protein required for biogenesis of the small ribosomal subunit; heterozygous mutant shows haploinsufficiency in K1 killer toxin resistance; essential gene; NAT10, the human homolog, implicated in several types of cancer and premature aging. (1056 aa) | ||||
RPS16A | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S16 and bacterial S9; RPS16A has a paralog, RPS16B, that arose from the whole genome duplication. (143 aa) | ||||
RRB1 | Ribosome assembly protein RRB1; Specific chaperone for ribosomal protein Rpl3p; binds to nascent Rpl3p during translation; essential gene. (511 aa) | ||||
ASC1 | G-protein beta subunit and guanine dissociation inhibitor for Gpa2p; ortholog of RACK1 that inhibits translation; core component of the small (40S) ribosomal subunit; required to prevent frameshifting at ribosomes stalled at repeated CGA codons; regulates P-body formation induced by replication stress; represses Gcn4p in the absence of amino acid starvation. (319 aa) | ||||
RPS1B | Ribosomal protein 10 (rp10) of the small (40S) subunit; homologous to mammalian ribosomal protein S3A, no bacterial homolog; RPS1B has a paralog, RPS1A, that arose from the whole genome duplication. (255 aa) | ||||
RPS18B | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S18 and bacterial S13; RPS18B has a paralog, RPS18A, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress. (146 aa) | ||||
RPS17A | Ribosomal protein 51 (rp51) of the small (40s) subunit; homologous to mammalian ribosomal protein S17, no bacterial homolog; RPS17A has a paralog, RPS17B, that arose from the whole genome duplication. (136 aa) | ||||
RPS1A | Ribosomal protein 10 (rp10) of the small (40S) subunit; homologous to mammalian ribosomal protein S3A, no bacterial homolog; RPS1A has a paralog, RPS1B, that arose from the whole genome duplication. (255 aa) | ||||
RPS29A | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S29 and bacterial S14; RPS29A has a paralog, RPS29B, that arose from the whole genome duplication. (56 aa) | ||||
RPS22B | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S15A and bacterial S8; RPS22B has a paralog, RPS22A, that arose from the whole genome duplication. (130 aa) | ||||
KAP95 | Importin subunit beta-1; Karyopherin beta; forms a complex with Srp1p/Kap60p; interacts with nucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates PC biosynthesis; GDP-to-GTP exchange factor for Gsp1p. (861 aa) | ||||
RPS30A | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S30, no bacterial homolog; RPS30A has a paralog, RPS30B, that arose from the whole genome duplication. (63 aa) | ||||
RPL10 | Ribosomal 60S subunit protein L10; homologous to mammalian ribosomal protein L10 and bacterial L16; responsible for joining the 40S and 60S subunits; regulates translation initiation; similar to members of the QM gene family; protein abundance increases under DNA replication stress; mutations in human homolog implicated in T-cell acute lymphoblastic leukemia and also autism spectrum disorders (ASD); human RPL10 can complement yeast null mutant. (221 aa) | ||||
RPS21A | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S21, no bacterial homolog; RPS21A has a paralog, RPS21B, that arose from the whole genome duplication. (87 aa) | ||||
SEF1 | Putative transcription factor; has homolog in Kluyveromyces lactis. (1148 aa) | ||||
RPS8A | Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S8, no bacterial homolog; RPS8A has a paralog, RPS8B, that arose from the whole genome duplication. (200 aa) |