node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ECT1 | EKI1 | YGR007W | YDR147W | Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2. | Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. | 0.996 |
ECT1 | EPT1 | YGR007W | YHR123W | Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2. | Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication. | 0.997 |
ECT1 | PCT1 | YGR007W | YGR202C | Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2. | Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity. | 0.543 |
ECT1 | PSD1 | YGR007W | YNL169C | Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2. | Phosphatidylserine decarboxylase of the mitochondrial inner membrane; converts phosphatidylserine to phosphatidylethanolamine; regulates mitochondrial fusion and morphology by affecting lipid mixing in the mitochondrial membrane and by influencing the ratio of long to short forms of Mgm1p; partly exposed to the mitochondrial intermembrane space; autocatalytically processed; Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily. | 0.892 |
ECT1 | PSD2 | YGR007W | YGR170W | Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2. | Phosphatidylserine decarboxylase 2 alpha chain; Phosphatidylserine decarboxylase of the Golgi and vacuolar membranes; converts phosphatidylserine to phosphatidylethanolamine; controls vacuolar membrane phospholipid content by regulating phospholipids in compartments that will eventually give rise to the vacuole; loss of Psd2p causes a specific reduction in vacuolar membrane PE levels while total PE levels are not significantly affected. | 0.799 |
EKI1 | ECT1 | YDR147W | YGR007W | Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. | Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2. | 0.996 |
EKI1 | EPT1 | YDR147W | YHR123W | Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. | Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication. | 0.956 |
EKI1 | PCT1 | YDR147W | YGR202C | Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. | Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity. | 0.947 |
EKI1 | PSD1 | YDR147W | YNL169C | Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. | Phosphatidylserine decarboxylase of the mitochondrial inner membrane; converts phosphatidylserine to phosphatidylethanolamine; regulates mitochondrial fusion and morphology by affecting lipid mixing in the mitochondrial membrane and by influencing the ratio of long to short forms of Mgm1p; partly exposed to the mitochondrial intermembrane space; autocatalytically processed; Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily. | 0.879 |
EKI1 | PSD2 | YDR147W | YGR170W | Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. | Phosphatidylserine decarboxylase 2 alpha chain; Phosphatidylserine decarboxylase of the Golgi and vacuolar membranes; converts phosphatidylserine to phosphatidylethanolamine; controls vacuolar membrane phospholipid content by regulating phospholipids in compartments that will eventually give rise to the vacuole; loss of Psd2p causes a specific reduction in vacuolar membrane PE levels while total PE levels are not significantly affected. | 0.875 |
EPT1 | ECT1 | YHR123W | YGR007W | Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication. | Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2. | 0.997 |
EPT1 | EKI1 | YHR123W | YDR147W | Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication. | Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. | 0.956 |
EPT1 | PCT1 | YHR123W | YGR202C | Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication. | Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity. | 0.916 |
EPT1 | PSD1 | YHR123W | YNL169C | Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication. | Phosphatidylserine decarboxylase of the mitochondrial inner membrane; converts phosphatidylserine to phosphatidylethanolamine; regulates mitochondrial fusion and morphology by affecting lipid mixing in the mitochondrial membrane and by influencing the ratio of long to short forms of Mgm1p; partly exposed to the mitochondrial intermembrane space; autocatalytically processed; Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily. | 0.989 |
EPT1 | PSD2 | YHR123W | YGR170W | Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication. | Phosphatidylserine decarboxylase 2 alpha chain; Phosphatidylserine decarboxylase of the Golgi and vacuolar membranes; converts phosphatidylserine to phosphatidylethanolamine; controls vacuolar membrane phospholipid content by regulating phospholipids in compartments that will eventually give rise to the vacuole; loss of Psd2p causes a specific reduction in vacuolar membrane PE levels while total PE levels are not significantly affected. | 0.988 |
PCT1 | ECT1 | YGR202C | YGR007W | Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity. | Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2. | 0.543 |
PCT1 | EKI1 | YGR202C | YDR147W | Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity. | Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. | 0.947 |
PCT1 | EPT1 | YGR202C | YHR123W | Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity. | Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication. | 0.916 |
PCT1 | PSD1 | YGR202C | YNL169C | Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity. | Phosphatidylserine decarboxylase of the mitochondrial inner membrane; converts phosphatidylserine to phosphatidylethanolamine; regulates mitochondrial fusion and morphology by affecting lipid mixing in the mitochondrial membrane and by influencing the ratio of long to short forms of Mgm1p; partly exposed to the mitochondrial intermembrane space; autocatalytically processed; Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily. | 0.853 |
PCT1 | PSD2 | YGR202C | YGR170W | Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity. | Phosphatidylserine decarboxylase 2 alpha chain; Phosphatidylserine decarboxylase of the Golgi and vacuolar membranes; converts phosphatidylserine to phosphatidylethanolamine; controls vacuolar membrane phospholipid content by regulating phospholipids in compartments that will eventually give rise to the vacuole; loss of Psd2p causes a specific reduction in vacuolar membrane PE levels while total PE levels are not significantly affected. | 0.779 |