STRINGSTRING
NAT5 NAT5 MAP2 MAP2 RPL19A RPL19A CDC28 CDC28 NAT1 NAT1 RPL35B RPL35B RPL35A RPL35A ARX1 ARX1 OXA1 OXA1 RPL26B RPL26B ARD1 ARD1 SUI2 SUI2 RPL38 RPL38 RPL26A RPL26A YDJ1 YDJ1 RPL25 RPL25 SRP68 SRP68 SRP54 SRP54 RPL19B RPL19B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NAT5N-alpha-acetyltransferase NAT5; Subunit of protein N-terminal acetyltransferase NatA; NatA is comprised of Nat1p, Ard1p, and Nat5p; N-terminally acetylates many proteins, which influences multiple processes such as the cell cycle, heat-shock resistance, mating, sporulation, and telomeric silencing; Belongs to the acetyltransferase family. (176 aa)
MAP2Methionine aminopeptidase; catalyzes the cotranslational removal of N-terminal methionine from nascent polypeptides; function is partially redundant with that of Map1p; Belongs to the peptidase M24A family. Methionine aminopeptidase eukaryotic type 2 subfamily. (421 aa)
RPL19ARibosomal 60S subunit protein L19A; rpl19a and rpl19b single null mutations result in slow growth, while the double null mutation is lethal; homologous to mammalian ribosomal protein L19, no bacterial homolog; RPL19A has a paralog, RPL19B, that arose from the whole genome duplication. (189 aa)
CDC28Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant. (298 aa)
NAT1Subunit of protein N-terminal acetyltransferase NatA; NatA comprised of Nat1p, Ard1p, and Nat5p; N-terminally acetylates many proteins to influence multiple processes such as cell cycle progression, heat-shock resistance, mating, sporulation, telomeric silencing and early stages of mitophagy; orthologous to human NAA15; expression of both human NAA10 and NAA15 functionally complements ard1 nat1 double mutant although single mutations are not complemented by their orthologs. (854 aa)
RPL35BRibosomal 60S subunit protein L35B; homologous to mammalian ribosomal protein L35 and bacterial L29; RPL35B has a paralog, RPL35A, that arose from the whole genome duplication. (120 aa)
RPL35ARibosomal 60S subunit protein L35A; homologous to mammalian ribosomal protein L35 and bacterial L29; RPL35A has a paralog, RPL35B, that arose from the whole genome duplication. (120 aa)
ARX1Probable metalloprotease ARX1; Nuclear export factor for the ribosomal pre-60S subunit; shuttling factor which directly binds FG rich nucleoporins and facilities translocation through the nuclear pore complex; interacts directly with Alb1p; responsible for Tif6p recycling defects in the absence of Rei1; associated with the ribosomal export complex. (593 aa)
OXA1Mitochondrial inner membrane insertase; mediates the insertion of both mitochondrial- and nuclear-encoded proteins from the matrix into the inner membrane; also has a role in insertion of carrier proteins into the inner membrane; acts as a voltage-gated ion channel, activated by substrate peptides; interacts with mitochondrial ribosomes; conserved from bacteria to animals. (402 aa)
RPL26BRibosomal 60S subunit protein L26B; binds to 5.8S rRNA; non-essential even when paralog is also deleted; deletion has minimal affections on ribosome biosynthesis; homologous to mammalian ribosomal protein L26 and bacterial L24; RPL26B has a paralog, RPL26A, that arose from the whole genome duplication. (127 aa)
ARD1Subunit of protein N-terminal acetyltransferase NatA; NatA comprises Nat1p, Ard1p, Nat5p; acetylates many proteins to influence telomeric silencing, cell cycle, heat-shock resistance, mating, sporulation, early stages of mitophagy; protein abundance increases under DNA replication stress; mutations in human homolog X-linked NAA10 lead to Ogden syndrome (S37P) and intellectual disability (R116W); expression of human NAA10 and NAA15 can complement ard1 nat1 double mutant. (238 aa)
SUI2Alpha subunit of the translation initiation factor eIF2; eIF2 is involved in identification of the start codon; phosphorylation of Ser51 is required for regulation of translation by inhibiting the exchange of GDP for GTP; protein abundance increases in response to DNA replication stress. (304 aa)
RPL38Ribosomal 60S subunit protein L38; homologous to mammalian ribosomal protein L38, no bacterial homolog; Belongs to the eukaryotic ribosomal protein eL38 family. (78 aa)
RPL26ARibosomal 60S subunit protein L26A; binds to 5.8S rRNA; non-essential even when paralog is also deleted; deletion has minimal affections on ribosome biosynthesis; homologous to mammalian ribosomal protein L26 and bacterial L24; RPL26A has a paralog, RPL26B, that arose from the whole genome duplication. (127 aa)
YDJ1Mitochondrial protein import protein MAS5; Type I HSP40 co-chaperone; involved in regulation of HSP90 and HSP70 functions; acts as an adaptor that helps Rsp5p recognize cytosolic misfolded proteins for ubiquitination after heat shock; critical for determining cell size at Start as a function of growth rate; involved in protein translocation across membranes; member of the DnaJ family; chimeric protein in which human p58IPK J domain replaces yeast Ydj1p J domain can complement yeast ydj1 mutant. (409 aa)
RPL25Ribosomal 60S subunit protein L25; primary rRNA-binding ribosomal protein component of large ribosomal subunit; binds to 25S rRNA via a conserved C-terminal motif; homologous to mammalian ribosomal protein L23A and bacterial L23; Belongs to the universal ribosomal protein uL23 family. (142 aa)
SRP68Core component of the signal recognition particle (SRP) complex; SRP complex functions in targeting nascent secretory proteins to the endoplasmic reticulum (ER) membrane; relocalizes from cytoplasm to the nuclear periphery upon DNA replication stress; Belongs to the SRP68 family. (599 aa)
SRP54Signal recognition particle (SRP) subunit (homolog of mammalian SRP54); contains the signal sequence-binding activity of SRP, interacts with the SRP RNA, and mediates binding of SRP to signal receptor; contains GTPase domain. (541 aa)
RPL19BRibosomal 60S subunit protein L19B; rpl19a and rpl19b single null mutations result in slow growth, while the double null mutation is lethal; homologous to mammalian ribosomal protein L19, no bacterial homolog; RPL19B has a paralog, RPL19A, that arose from the whole genome duplication. (189 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (32%) [HD]