Your Input: | |||||
ERG5 | Cytochrome P450 61; C-22 sterol desaturase; a cytochrome P450 enzyme that catalyzes the formation of the C-22(23) double bond in the sterol side chain in ergosterol biosynthesis; may be a target of azole antifungal drugs. (538 aa) | ||||
CDC19 | Pyruvate kinase; functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to pyruvate, the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration; regulated via allosteric activation by fructose bisphosphate; CDC19 has a paralog, PYK2, that arose from the whole genome duplication. (500 aa) | ||||
PGI1 | Glycolytic enzyme phosphoglucose isomerase; catalyzes the interconversion of glucose-6-phosphate and fructose-6-phosphate; required for cell cycle progression and completion of the gluconeogenic events of sporulation. (554 aa) | ||||
CHA1 | Catabolic L-serine/threonine dehydratase; Catabolic L-serine (L-threonine) deaminase; catalyzes the degradation of both L-serine and L-threonine; required to use serine or threonine as the sole nitrogen source, transcriptionally induced by serine and threonine; Belongs to the serine/threonine dehydratase family. (360 aa) | ||||
CIT2 | Citrate synthase, peroxisomal isozyme involved in glyoxylate cycle; catalyzes condensation of acetyl coenzyme A and oxaloacetate to form citrate; expression is controlled by Rtg1p and Rtg2p transcription factors; SCF-Ucc1 regulates level of Cit2p to maintain citrate homeostasis; oxaloacetate-dependent positive feedback loop inhibits Cit2p ubiquitination; CIT2 has a paralog, CIT1, that arose from the whole genome duplication. (460 aa) | ||||
IDP1 | Mitochondrial NADP-specific isocitrate dehydrogenase; catalyzes the oxidation of isocitrate to alpha-ketoglutarate; not required for mitochondrial respiration and may function to divert alpha-ketoglutarate to biosynthetic processes. (428 aa) | ||||
ERG4 | C-24(28) sterol reductase; catalyzes the final step in ergosterol biosynthesis; mutants are viable, but lack ergosterol; Belongs to the ERG4/ERG24 family. (473 aa) | ||||
ERG25 | Methylsterol monooxygenase; C-4 methyl sterol oxidase; catalyzes the first of three steps required to remove two C-4 methyl groups from an intermediate in ergosterol biosynthesis; mutants accumulate the sterol intermediate 4,4-dimethylzymosterol; human MSMO1 functionally complements the growth defect caused by repression of ERG25 expression. (309 aa) | ||||
ERG1 | Squalene epoxidase; catalyzes the epoxidation of squalene to 2,3-oxidosqualene; plays an essential role in the ergosterol-biosynthesis pathway and is the specific target of the antifungal drug terbinafine; human SQLE functionally complements the lethality of the erg1 null mutation. (496 aa) | ||||
ERG11 | Lanosterol 14-alpha-demethylase; catalyzes C-14 demethylation of lanosterol to form 4,4''-dimethyl cholesta-8,14,24-triene-3-beta-ol in ergosterol biosynthesis pathway; transcriptionally down-regulated when ergosterol is in excess; member of cytochrome P450 family; associated and coordinately regulated with the P450 reductase Ncp1p; human CYP51A1 functionally complements the lethality of the erg11 null mutation. (530 aa) | ||||
ERG7 | Lanosterol synthase; an essential enzyme that catalyzes the cyclization of squalene 2,3-epoxide, a step in ergosterol biosynthesis; human LSS functionally complements the lethality of the erg7 null mutation; Belongs to the terpene cyclase/mutase family. (731 aa) | ||||
ERG9 | Squalene synthase; Farnesyl-diphosphate farnesyl transferase (squalene synthase); joins two farnesyl pyrophosphate moieties to form squalene in the sterol biosynthesis pathway. (444 aa) | ||||
ERG3 | Delta(7)-sterol 5(6)-desaturase; C-5 sterol desaturase; glycoprotein that catalyzes the introduction of a C-5(6) double bond into episterol, a precursor in ergosterol biosynthesis; transcriptionally down-regulated when ergosterol is in excess; mutants are viable, but cannot grow on non-fermentable carbon sources; substrate of HRD ubiquitin ligase; mutation is functionally complemented by human SC5D. (365 aa) | ||||
IDP2 | Cytosolic NADP-specific isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose; IDP2 has a paralog, IDP3, that arose from the whole genome duplication. (412 aa) | ||||
ACO1 | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. (778 aa) | ||||
ERG6 | Delta(24)-sterol C-methyltransferase; converts zymosterol to fecosterol in the ergosterol biosynthetic pathway by methylating position C-24; localized to lipid particles, the plasma membrane-associated endoplasmic reticulum, and the mitochondrial outer membrane; Belongs to the class I-like SAM-binding methyltransferase superfamily. Erg6/SMT family. (383 aa) | ||||
ERG13 | 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase; catalyzes the formation of HMG-CoA from acetyl-CoA and acetoacetyl-CoA; involved in the second step in mevalonate biosynthesis. (491 aa) | ||||
RNH1 | Ribonuclease H1; able to bind double-stranded RNAs and RNA-DNA hybrids; associates with RNAse polymerase I. (348 aa) | ||||
IDP3 | Peroxisomal NADP-dependent isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate with the formation of NADP(H+), required for growth on unsaturated fatty acids; IDP3 has a paralog, IDP2, that arose from the whole genome duplication. (420 aa) | ||||
CIT1 | Citrate synthase, mitochondrial; Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication. (479 aa) | ||||
PYK2 | Pyruvate kinase; appears to be modulated by phosphorylation; transcription repressed by glucose, and Pyk2p may be active under low glycolytic flux; PYK2 has a paralog, CDC19, that arose from the whole genome duplication. (506 aa) | ||||
ERG10 | Acetyl-CoA C-acetyltransferase (acetoacetyl-CoA thiolase); cytosolic enzyme that transfers an acetyl group from one acetyl-CoA molecule to another, forming acetoacetyl-CoA; involved in the first step in mevalonate biosynthesis; human ACAT1 functionally complements the growth defect caused by repression of ERG10 expression; Belongs to the thiolase-like superfamily. Thiolase family. (398 aa) | ||||
CIT3 | Dual specificity mitochondrial citrate and methylcitrate synthase; catalyzes the condensation of acetyl-CoA and oxaloacetate to form citrate and that of propionyl-CoA and oxaloacetate to form 2-methylcitrate. (486 aa) |