STRINGSTRING
PRC1 PRC1 EPS1 EPS1 KAR2 KAR2 SOD1 SOD1 HSP104 HSP104 YAP1 YAP1 TSA1 TSA1 ERO1 ERO1 GLR1 GLR1 PDI1 PDI1 RPN4 RPN4 URA3 URA3 SSA4 SSA4 HSF1 HSF1 IRE1 IRE1 SKN7 SKN7
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PRC1Vacuolar carboxypeptidase Y (proteinase C, CPY); broad-specificity C-terminal exopeptidase involved in non-specific protein degradation in the vacuole; member of the serine carboxypeptidase family. (532 aa)
EPS1ER-retained PMA1-suppressing protein 1; ER protein with chaperone and co-chaperone activity; involved in retention of resident ER proteins; has a role in recognizing proteins targeted for ER-associated degradation (ERAD), member of the protein disulfide isomerase family. (701 aa)
KAR2Endoplasmic reticulum chaperone BiP; ATPase involved in protein import into the ER; also acts as a chaperone to mediate protein folding in the ER and may play a role in ER export of soluble proteins; regulates the unfolded protein response via interaction with Ire1p. (682 aa)
SOD1Cytosolic copper-zinc superoxide dismutase; detoxifies superoxide; stabilizes Yck1p and Yck2p kinases in glucose to repress respiration; phosphorylated by Dun1p, enters nucleus under oxidative stress to promote transcription of stress response genes; human ortholog SOD1 implicated in ALS complements a null allele; abundance increases under DNA replication stress and during exposure to boric acid; localization to mitochondrial intermembrane space is modulated by MICOS complex; Belongs to the Cu-Zn superoxide dismutase family. (154 aa)
HSP104Disaggregase; heat shock protein that cooperates with Ydj1p (Hsp40) and Ssa1p (Hsp70) to refold and reactivate previously denatured, aggregated proteins; responsive to stresses including: heat, ethanol, and sodium arsenite; involved in [PSI+] propagation; protein becomes more abundant and forms cytoplasmic foci in response to DNA replication stress; potentiated Hsp104p variants decrease TDP-43 proteotoxicity by eliminating its cytoplasmic aggregation; Belongs to the ClpA/ClpB family. (908 aa)
YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; activated by H2O2 through the multistep formation of disulfide bonds and transit from the cytoplasm to the nucleus; Yap1p is degraded in the nucleus after the oxidative stress has passed; mediates resistance to cadmium; relative distribution to the nucleus increases upon DNA replication stress; YAP1 has a paralog, CAD1, that arose from the whole genome duplication. (650 aa)
TSA1Peroxiredoxin TSA1; Thioredoxin peroxidase; acts as both ribosome-associated and free cytoplasmic antioxidant; self-associates to form high-molecular weight chaperone complex under oxidative stress; chaperone activity essential for growth in zinc deficiency; required for telomere length maintenance; binds and modulates Cdc19p activity; protein abundance increases, forms cytoplasmic foci during DNA replication stress; TSA1 has a paralog, TSA2, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. (196 aa)
ERO1Endoplasmic oxidoreductin-1; Thiol oxidase required for oxidative protein folding in the ER; essential for maintaining ER redox balance; feedback regulated via reduction and oxidation of regulatory bonds; reduced Pdi1p activates Ero1p by direct reduction of Ero1p regulatory bonds; depletion of thiol substrates and accumulation of oxidized Pdi1p results in inactivation of Ero1p by both Pdi1p-mediated oxidation and autonomous oxidation of Ero1p regulatory bonds; ero1-1 mutation complemented by human ERO1L. (563 aa)
GLR1Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. (483 aa)
PDI1Protein disulfide isomerase; multifunctional oxidoreductase of the ER lumen, essential for disulfide bond formation in secretory and cell-surface proteins, processing of non-native disulfide bonds; Ero1p activator; complexes with exomannosidase, Mnl1p to facilitate the recognition of misfolded glycoproteins and the trimming of glycan Man8GlcNAc2 to Man7GlcNAc2 on substrates, thereby accelerating ERAD; PDI1 has a paralog, EUG1, that arose from the whole genome duplication. (522 aa)
RPN4Protein RPN4; Transcription factor that stimulates expression of proteasome genes; Rpn4p levels are in turn regulated by the 26S proteasome in a negative feedback control mechanism; RPN4 is transcriptionally regulated by various stress responses; relative distribution to the nucleus increases upon DNA replication stress. (531 aa)
URA3Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa)
SSA4Heat shock protein that is highly induced upon stress; plays a role in SRP-dependent cotranslational protein-membrane targeting and translocation; member of the HSP70 family; cytoplasmic protein that concentrates in nuclei upon starvation; SSA4 has a paralog, SSA3, that arose from the whole genome duplication. (642 aa)
HSF1Trimeric heat shock transcription factor; activates multiple genes in response to highly diverse stresses; recognizes variable heat shock elements (HSEs) consisting of inverted NGAAN repeats; monitors translational status of cell through an RQC (Ribosomal Quality Control)-mediated translation-stress signal; involved in diauxic shift; posttranslationally regulated; human homolog HSF1 with linker region mutations can complement yeast hsf1 mutant; Belongs to the HSF family. (833 aa)
IRE1Serine/threonine-protein kinase/endoribonuclease IRE1; Serine-threonine kinase and endoribonuclease; transmembrane protein that mediates the unfolded protein response (UPR) by regulating Hac1p synthesis through HAC1 mRNA splicing; role in homeostatic adaptation to ER stress; Kar2p binds inactive Ire1p and releases from it upon ER stress. (1115 aa)
SKN7Transcription factor SKN7; Nuclear response regulator and transcription factor; physically interacts with the Tup1-Cyc8 complex and recruits Tup1p to its targets; part of a branched two-component signaling system; required for optimal induction of heat-shock genes in response to oxidative stress; involved in osmoregulation; relocalizes to the cytosol in response to hypoxia; SKN7 has a paralog, HMS2, that arose from the whole genome duplication. (622 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (30%) [HD]