STRINGSTRING
IDI1 IDI1 ERG10 ERG10 ATG26 ATG26 HMG2 HMG2 ERG6 ERG6 HMG1 HMG1 ERG5 ERG5 ERG2 ERG2 ERG12 ERG12 PGI1 PGI1 AFG1 AFG1 ERG26 ERG26 ERG4 ERG4 ERG25 ERG25 ERG1 ERG1 ERG11 ERG11 ERG7 ERG7 ERG9 ERG9 ERG3 ERG3 ERG24 ERG24 ERG27 ERG27
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
IDI1Isopentenyl-diphosphate Delta-isomerase; Isopentenyl diphosphate:dimethylallyl diphosphate isomerase; catalyzes an essential activation step in the isoprenoid biosynthetic pathway; required for viability; isopentenyl diphosphate:dimethylallyl diphosphate isomerase is also known as IPP isomerase; Belongs to the IPP isomerase type 1 family. (288 aa)
ERG10Acetyl-CoA C-acetyltransferase (acetoacetyl-CoA thiolase); cytosolic enzyme that transfers an acetyl group from one acetyl-CoA molecule to another, forming acetoacetyl-CoA; involved in the first step in mevalonate biosynthesis; human ACAT1 functionally complements the growth defect caused by repression of ERG10 expression; Belongs to the thiolase-like superfamily. Thiolase family. (398 aa)
ATG26UDP-glucose:sterol glucosyltransferase; conserved enzyme involved in synthesis of sterol glucoside membrane lipids; in contrast to ATG26 from P. pastoris, S. cerevisiae ATG26 is not involved in autophagy; Belongs to the glycosyltransferase 28 family. (1198 aa)
HMG2HMG-CoA reductase; converts HMG-CoA to mevalonate, a rate-limiting step in sterol biosynthesis; one of two isozymes; overproduction induces assembly of peripheral ER membrane arrays and short nuclear-associated membrane stacks; forms foci at nuclear periphery upon DNA replication stress; HMG2 has a paralog, HMG1, that arose from the whole genome duplication; human homolog HMGCR can complement yeast hmg2 mutant. (1045 aa)
ERG6Delta(24)-sterol C-methyltransferase; converts zymosterol to fecosterol in the ergosterol biosynthetic pathway by methylating position C-24; localized to lipid particles, the plasma membrane-associated endoplasmic reticulum, and the mitochondrial outer membrane; Belongs to the class I-like SAM-binding methyltransferase superfamily. Erg6/SMT family. (383 aa)
HMG1HMG-CoA reductase; catalyzes conversion of HMG-CoA to mevalonate, which is a rate-limiting step in sterol biosynthesis; one of two isozymes; localizes to nuclear envelope; overproduction induces formation of karmellae; forms foci at nuclear periphery upon DNA replication stress; HMG1 has a paralog, HMG2, that arose from the whole genome duplication; human homolog HMGCR can complement yeast hmg1 mutant. (1054 aa)
ERG5Cytochrome P450 61; C-22 sterol desaturase; a cytochrome P450 enzyme that catalyzes the formation of the C-22(23) double bond in the sterol side chain in ergosterol biosynthesis; may be a target of azole antifungal drugs. (538 aa)
ERG2C-8 sterol isomerase; catalyzes isomerization of delta-8 double bond to delta-7 position at an intermediate step in ergosterol biosynthesis; transcriptionally down-regulated when ergosterol is in excess; mutation is functionally complemented by human EBP. (222 aa)
ERG12Mevalonate kinase; acts in the biosynthesis of isoprenoids and sterols, including ergosterol, from mevalonate; human MVK functionally complements the lethality of the erg12 null mutation. (443 aa)
PGI1Glycolytic enzyme phosphoglucose isomerase; catalyzes the interconversion of glucose-6-phosphate and fructose-6-phosphate; required for cell cycle progression and completion of the gluconeogenic events of sporulation. (554 aa)
AFG1Protein that may act as a chaperone for cytochrome c oxidase subunits; conserved protein; may act as a chaperone in the degradation of misfolded or unassembled cytochrome c oxidase subunits; localized to matrix face of the mitochondrial inner membrane; member of the AAA family but lacks a protease domain. (509 aa)
ERG26Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating; C-3 sterol dehydrogenase; catalyzes the second of three steps required to remove two C-4 methyl groups from an intermediate in ergosterol biosynthesis; human homolog NSDHL implicated in CK syndrome, and can complement yeast null mutant; molecular target of natural product and antifungal compound FR171456. (349 aa)
ERG4C-24(28) sterol reductase; catalyzes the final step in ergosterol biosynthesis; mutants are viable, but lack ergosterol; Belongs to the ERG4/ERG24 family. (473 aa)
ERG25Methylsterol monooxygenase; C-4 methyl sterol oxidase; catalyzes the first of three steps required to remove two C-4 methyl groups from an intermediate in ergosterol biosynthesis; mutants accumulate the sterol intermediate 4,4-dimethylzymosterol; human MSMO1 functionally complements the growth defect caused by repression of ERG25 expression. (309 aa)
ERG1Squalene epoxidase; catalyzes the epoxidation of squalene to 2,3-oxidosqualene; plays an essential role in the ergosterol-biosynthesis pathway and is the specific target of the antifungal drug terbinafine; human SQLE functionally complements the lethality of the erg1 null mutation. (496 aa)
ERG11Lanosterol 14-alpha-demethylase; catalyzes C-14 demethylation of lanosterol to form 4,4''-dimethyl cholesta-8,14,24-triene-3-beta-ol in ergosterol biosynthesis pathway; transcriptionally down-regulated when ergosterol is in excess; member of cytochrome P450 family; associated and coordinately regulated with the P450 reductase Ncp1p; human CYP51A1 functionally complements the lethality of the erg11 null mutation. (530 aa)
ERG7Lanosterol synthase; an essential enzyme that catalyzes the cyclization of squalene 2,3-epoxide, a step in ergosterol biosynthesis; human LSS functionally complements the lethality of the erg7 null mutation; Belongs to the terpene cyclase/mutase family. (731 aa)
ERG9Squalene synthase; Farnesyl-diphosphate farnesyl transferase (squalene synthase); joins two farnesyl pyrophosphate moieties to form squalene in the sterol biosynthesis pathway. (444 aa)
ERG3Delta(7)-sterol 5(6)-desaturase; C-5 sterol desaturase; glycoprotein that catalyzes the introduction of a C-5(6) double bond into episterol, a precursor in ergosterol biosynthesis; transcriptionally down-regulated when ergosterol is in excess; mutants are viable, but cannot grow on non-fermentable carbon sources; substrate of HRD ubiquitin ligase; mutation is functionally complemented by human SC5D. (365 aa)
ERG24C-14 sterol reductase; acts in ergosterol biosynthesis; mutants accumulate the abnormal sterol ignosterol (ergosta-8,14 dienol), and are viable under anaerobic growth conditions but inviable on rich medium under aerobic conditions; Belongs to the ERG4/ERG24 family. (438 aa)
ERG273-keto sterol reductase; catalyzes the last of three steps required to remove two C-4 methyl groups from an intermediate in ergosterol biosynthesis; mutants are sterol auxotrophs; mutation is functionally complemented by human HSD17B7; Belongs to the short-chain dehydrogenases/reductases (SDR) family. ERG27 subfamily. (347 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (22%) [HD]