STRINGSTRING
CDC19 CDC19 RPS6B RPS6B SNF1 SNF1 NTF2 NTF2 GAL83 GAL83 SNF4 SNF4 TOS3 TOS3 TIF2 TIF2 TPK1 TPK1 SAG1 SAG1 FBA1 FBA1 TPK3 TPK3 TIF1 TIF1 RPS6A RPS6A TPK2 TPK2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CDC19Pyruvate kinase; functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to pyruvate, the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration; regulated via allosteric activation by fructose bisphosphate; CDC19 has a paralog, PYK2, that arose from the whole genome duplication. (500 aa)
RPS6BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S6, no bacterial homolog; phosphorylated on S233 by Ypk3p in a TORC1-dependent manner, and on S232 in a TORC1/2-dependent manner by Ypk1/2/3p; RPS6B has a paralog, RPS6A, that arose from the whole genome duplication. (236 aa)
SNF1AMP-activated S/T protein kinase; forms a complex with Snf4p and members of the Sip1p/Sip2p/Gal83p family; required for transcription of glucose-repressed genes, thermotolerance, sporulation, and peroxisome biogenesis; regulates nucleocytoplasmic shuttling of Hxk2p; regulates filamentous growth and acts as a non-canonical GEF, activating Arf3p during invasive growth; SUMOylation by Mms21p inhibits its function and targets Snf1p for destruction via the Slx5-Slx8 Ub ligase. (633 aa)
NTF2Nuclear transport factor 2; Nuclear envelope protein; interacts with GDP-bound Gsp1p and with proteins of the nuclear pore to transport Gsp1p into the nucleus where it is an essential player in nucleocytoplasmic transport. (125 aa)
GAL83One of three possible beta-subunits of the Snf1 kinase complex; allows nuclear localization of the Snf1 kinase complex in the presence of a nonfermentable carbon source; necessary and sufficient for phosphorylation of the Mig2p transcription factor in response to alkaline stress; functionally redundant with SIP1 and SIP2 for the phosphorylation of Mig1p in response to glucose deprivation; contains a glycogen-binding domain. (417 aa)
SNF4Activating gamma subunit of the AMP-activated Snf1p kinase complex; additional subunits of the complex are Snf1p and a Sip1p/Sip2p/Gal83p family member; activates glucose-repressed genes, represses glucose-induced genes; role in sporulation, and peroxisome biogenesis; protein abundance increases in response to DNA replication stress. (322 aa)
TOS3Serine/threonine-protein kinase TOS3; Protein kinase; related to and functionally redundant with Elm1p and Sak1p for the phosphorylation and activation of Snf1p; functionally orthologous to LKB1, a mammalian kinase associated with Peutz-Jeghers cancer-susceptibility syndrome; TOS3 has a paralog, SAK1, that arose from the whole genome duplication. (560 aa)
TIF2Translation initiation factor eIF4A; DEA(D/H)-box RNA helicase that couples ATPase activity to RNA binding and unwinding; forms a dumbbell structure of two compact domains connected by a linker; interacts with eIF4G; protein abundance increases in response to DNA replication stress; TIF2 has a paralog, TIF1, that arose from the whole genome duplication. (395 aa)
TPK1cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; inhibited by regulatory subunit Bcy1p in the absence of cAMP; phosphorylates and inhibits Whi3p to promote G1/S phase passage; partially redundant with Tpk2p and Tpk3p; phosphorylates pre-Tom40p, which impairs its import into mitochondria under non-respiratory conditions; TPK1 has a paralog, TPK3, that arose from the whole genome duplication. (397 aa)
SAG1Alpha-agglutinin of alpha-cells; binds to Aga1p during agglutination, N-terminal half is homologous to the immunoglobulin superfamily and contains binding site for a-agglutinin, C-terminal half is highly glycosylated and contains GPI anchor; To C.albicans ALS1. (650 aa)
FBA1Fructose 1,6-bisphosphate aldolase; required for glycolysis and gluconeogenesis; catalyzes conversion of fructose 1,6 bisphosphate to glyceraldehyde-3-P and dihydroxyacetone-P; locates to mitochondrial outer surface upon oxidative stress; N-terminally propionylated in vivo; Belongs to the class II fructose-bisphosphate aldolase family. (359 aa)
TPK3cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; partially redundant with Tpk1p and Tpk2p; localizes to P-bodies during stationary phase; TPK3 has a paralog, TPK1, that arose from the whole genome duplication. (398 aa)
TIF1Translation initiation factor eIF4A; DEA(D/H)-box RNA helicase that couples ATPase activity to RNA binding and unwinding; forms a dumbbell structure of two compact domains connected by a linker; interacts with eIF4G; protein abundance increases in response to DNA replication stress; TIF1 has a paralog, TIF2, that arose from the whole genome duplication. (395 aa)
RPS6AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S6, no bacterial homolog; phosphorylated on S233 by Ypk3p in a TORC1-dependent manner, and on S232 in a TORC1/2-dependent manner by Ypk1/2/3p; RPS6A has a paralog, RPS6B, that arose from the whole genome duplication. (236 aa)
TPK2cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; partially redundant with Tpk1p and Tpk3p; localizes to P-bodies during stationary phase; relocalizes to the cytosol in response to hypoxia. (380 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (20%) [HD]