STRINGSTRING
CSL4 CSL4 TRF5 TRF5 DIS3 DIS3 RRP43 RRP43 RRP42 RRP42 AIR2 AIR2 RRP45 RRP45 URA3 URA3 RRP46 RRP46 LRP1 LRP1 AIR1 AIR1 INO1 INO1 PGK1 PGK1 PAP1 PAP1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CSL4Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; predicted to contain an S1 RNA binding domain; human homolog EXOSC1 partially complements yeast csl4 null mutant, and can complement inviability of strain in which expression of CSL4 is repressed. (292 aa)
TRF5Non-canonical poly(A) polymerase; involved in nuclear RNA degradation as a component of the TRAMP complex; catalyzes polyadenylation of hypomodified tRNAs, and snoRNA and rRNA precursors; overlapping but non-redundant functions with Pap2p. (642 aa)
DIS3Exosome core complex catalytic subunit; has both endonuclease and 3'-5' exonuclease activity; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; role in degradation of tRNAs; similar to E. coli RNase R and to human DIS3, which partially complements dis3-81 heat sensitivity; mutations in Dis3p analogous to human mutations implicated in multiple myeloma impair exosome function; protein abundance increases under to DNA replication stress. (1001 aa)
RRP43Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp43p (OIP2, EXOSC8); protein abundance increases in response to DNA replication stress. (394 aa)
RRP42Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp42p (EXOSC7). (265 aa)
AIR2Protein AIR2; RNA-binding subunit of the TRAMP nuclear RNA surveillance complex; involved in nuclear RNA processing and degradation; involved in TRAMP complex assembly as a bridge between Mtr4p and Trf4p; stimulates the poly(A) polymerase activity of Pap2p in vitro; has 5 zinc knuckle motifs; AIR2 has a paralog, AIR1, that arose from the whole genome duplication; Air2p and Air1p have nonredundant roles in regulation of substrate specificity of the exosome. (344 aa)
RRP45Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp45p (PM/SCL-75, EXOSC9); protein abundance increases in response to DNA replication stress. (305 aa)
URA3Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. (267 aa)
RRP46Exosome non-catalytic core component; involved in 3'-5' RNA processing and degradation in both the nucleus and the cytoplasm; has similarity to E. coli RNase PH and to human hRrp46p (EXOSC5). (223 aa)
LRP1Nuclear exosome-associated nucleic acid binding protein; involved in RNA processing, surveillance, degradation, tethering, and export; forms a stable heterodimer with Rrp6p and regulates its exonucleolytic activity; rapidly degraded by the proteasome in the absence of Rrp6p; homolog of mammalian nuclear matrix protein C1D involved in regulation of DNA repair and recombination. (184 aa)
AIR1Zinc knuckle protein; involved in nuclear RNA processing and degradation as a component of the TRAMP complex; stimulates the poly(A) polymerase activity of Pap2p in vitro; AIR1 has a paralog, AIR2, that arose from the whole genome duplication; although Air1p and Air2p are homologous TRAMP subunits, they have nonredundant roles in regulation of substrate specificity of the exosome. (360 aa)
INO1Inositol-3-phosphate synthase; involved in synthesis of inositol phosphates and inositol-containing phospholipids; transcription is coregulated with other phospholipid biosynthetic genes by Ino2p and Ino4p, which bind the UASINO DNA element; Belongs to the myo-inositol 1-phosphate synthase family. (533 aa)
PGK13-phosphoglycerate kinase; catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis. (416 aa)
PAP1Poly(A) polymerase; one of three factors required for mRNA 3'-end polyadenylation, forms multiprotein complex with polyadenylation factor I (PF I), also required for mRNA nuclear export; may also polyadenylate rRNAs; required for gene looping. (568 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (16%) [HD]