STRINGSTRING
ATP3 ATP3 ATP2 ATP2 MRPL25 MRPL25 SIT4 SIT4 COX1 COX1 ATP8 ATP8 ATP6 ATP6 COX2 COX2 ATP1 ATP1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ATP3Gamma subunit of the F1 sector of mitochondrial F1F0 ATP synthase; F1F0 ATP synthase is a large, evolutionarily conserved enzyme complex required for ATP synthesis. (311 aa)
ATP2Beta subunit of the F1 sector of mitochondrial F1F0 ATP synthase; which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; F1 translationally regulates ATP6 and ATP8 expression to achieve a balanced output of ATP synthase genes encoded in nucleus and mitochondria; phosphorylated; Belongs to the ATPase alpha/beta chains family. (511 aa)
MRPL25Mitochondrial ribosomal protein of the large subunit; mutation confers increased replicative lifespan. (157 aa)
SIT4Serine/threonine-protein phosphatase PP1-1; Ceramide-activated, type 2A-related serine-threonine phosphatase; functions in G1/S transition of mitotic cycle; controls lifespan, mitochondrial function, cell cycle progression by regulating HXK2 phosphorylation; regulator of COPII coat dephosphorylation; required for ER to Golgi traffic; interacts with Hrr25p kinase; cytoplasmic and nuclear protein that modulates functions mediated by Pkc1p including cell wall and actin cytoskeleton organization; similar to human PP6. (311 aa)
COX1Subunit I of cytochrome c oxidase (Complex IV); Complex IV is the terminal member of the mitochondrial inner membrane electron transport chain; one of three mitochondrially-encoded subunits; Belongs to the heme-copper respiratory oxidase family. (534 aa)
ATP8ATP synthase protein 8; Subunit 8 of the F0 sector of mitochondrial F1F0 ATP synthase; encoded on the mitochondrial genome; ATP8 and ATP6 mRNAs are not translated in the absence of the F1 sector of ATPase. (48 aa)
ATP6Subunit a of the F0 sector of mitochondrial F1F0 ATP synthase; mitochondrially encoded; translation is specifically activated by Atp22p; ATP6 and ATP8 mRNAs are not translated in the absence of the F1 sector of ATPase; mutations in human ortholog MT-ATP6 are associated with neurodegenerative disorders such as Neurogenic Ataxia and Retinitis Pigmentosa (NARP), Leigh syndrome (LS), Charcot-Marie-Tooth (CMT), and ataxia telangiectasia. (259 aa)
COX2Subunit II of cytochrome c oxidase (Complex IV); Complex IV is the terminal member of the mitochondrial inner membrane electron transport chain; one of three mitochondrially-encoded subunits. (251 aa)
ATP1Alpha subunit of the F1 sector of mitochondrial F1F0 ATP synthase; which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; F1 translationally regulates ATP6 and ATP8 expression to achieve a balanced output of ATP synthase genes encoded in nucleus and mitochondria; phosphorylated; N-terminally propionylated in vivo; Belongs to the ATPase alpha/beta chains family. (545 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (20%) [HD]