node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ACO1 | ACO2 | YLR304C | YJL200C | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. | Homocitrate dehydratase, mitochondrial; Putative mitochondrial aconitase isozyme; similarity to Aco1p, an aconitase required for the TCA cycle; expression induced during growth on glucose, by amino acid starvation via Gcn4p, and repressed on ethanol. | 0.870 |
ACO1 | AFT1 | YLR304C | YGL071W | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | 0.549 |
ACO1 | FET3 | YLR304C | YMR058W | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. | Iron transport multicopper oxidase FET3; Ferro-O2-oxidoreductase; multicopper oxidase that oxidizes ferrous (Fe2+) to ferric iron (Fe3+) for subsequent cellular uptake by transmembrane permease Ftr1p; required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; protein abundance increases in response to DNA replication stress. | 0.496 |
ACO1 | IDP1 | YLR304C | YDL066W | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. | Mitochondrial NADP-specific isocitrate dehydrogenase; catalyzes the oxidation of isocitrate to alpha-ketoglutarate; not required for mitochondrial respiration and may function to divert alpha-ketoglutarate to biosynthetic processes. | 0.998 |
ACO1 | IDP2 | YLR304C | YLR174W | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. | Cytosolic NADP-specific isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose; IDP2 has a paralog, IDP3, that arose from the whole genome duplication. | 0.998 |
ACO1 | IDP3 | YLR304C | YNL009W | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. | Peroxisomal NADP-dependent isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate with the formation of NADP(H+), required for growth on unsaturated fatty acids; IDP3 has a paralog, IDP2, that arose from the whole genome duplication. | 0.997 |
ACO2 | ACO1 | YJL200C | YLR304C | Homocitrate dehydratase, mitochondrial; Putative mitochondrial aconitase isozyme; similarity to Aco1p, an aconitase required for the TCA cycle; expression induced during growth on glucose, by amino acid starvation via Gcn4p, and repressed on ethanol. | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. | 0.870 |
ACO2 | IDP1 | YJL200C | YDL066W | Homocitrate dehydratase, mitochondrial; Putative mitochondrial aconitase isozyme; similarity to Aco1p, an aconitase required for the TCA cycle; expression induced during growth on glucose, by amino acid starvation via Gcn4p, and repressed on ethanol. | Mitochondrial NADP-specific isocitrate dehydrogenase; catalyzes the oxidation of isocitrate to alpha-ketoglutarate; not required for mitochondrial respiration and may function to divert alpha-ketoglutarate to biosynthetic processes. | 0.826 |
ACO2 | IDP2 | YJL200C | YLR174W | Homocitrate dehydratase, mitochondrial; Putative mitochondrial aconitase isozyme; similarity to Aco1p, an aconitase required for the TCA cycle; expression induced during growth on glucose, by amino acid starvation via Gcn4p, and repressed on ethanol. | Cytosolic NADP-specific isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose; IDP2 has a paralog, IDP3, that arose from the whole genome duplication. | 0.819 |
ACO2 | IDP3 | YJL200C | YNL009W | Homocitrate dehydratase, mitochondrial; Putative mitochondrial aconitase isozyme; similarity to Aco1p, an aconitase required for the TCA cycle; expression induced during growth on glucose, by amino acid starvation via Gcn4p, and repressed on ethanol. | Peroxisomal NADP-dependent isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate with the formation of NADP(H+), required for growth on unsaturated fatty acids; IDP3 has a paralog, IDP2, that arose from the whole genome duplication. | 0.770 |
AFT1 | ACO1 | YGL071W | YLR304C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Aconitate hydratase, mitochondrial; Aconitase; required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; human homolog ACO2 can complement yeast null mutant. | 0.549 |
AFT1 | AFT2 | YGL071W | YPL202C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | 0.912 |
AFT1 | ARN1 | YGL071W | YHL040C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | ARN family transporter for siderophore-iron chelates; responsible for uptake of iron bound to ferrirubin, ferrirhodin, and related siderophores; protein increases in abundance and relocalizes to the vacuole upon DNA replication stress; Belongs to the major facilitator superfamily. | 0.857 |
AFT1 | CCC2 | YGL071W | YDR270W | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Cu(+2)-transporting P-type ATPase; required for export of copper from the cytosol into an extracytosolic compartment; similar to human proteins involved in Menkes and Wilsons diseases; protein abundance increases in response to DNA replication stress; affects TBSV model (+)RNA virus replication by regulating copper metabolism; human homologs ATP7A and ATP7B both complement yeast null mutant. | 0.941 |
AFT1 | FET3 | YGL071W | YMR058W | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Iron transport multicopper oxidase FET3; Ferro-O2-oxidoreductase; multicopper oxidase that oxidizes ferrous (Fe2+) to ferric iron (Fe3+) for subsequent cellular uptake by transmembrane permease Ftr1p; required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; protein abundance increases in response to DNA replication stress. | 0.993 |
AFT1 | FET4 | YGL071W | YMR319C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Low-affinity Fe(II) transporter of the plasma membrane; Belongs to the FET4 family. | 0.842 |
AFT1 | FIT3 | YGL071W | YOR383C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Facilitator of iron transport 3; Mannoprotein that is incorporated into the cell wall; incorporated via a glycosylphosphatidylinositol (GPI) anchor; involved in the retention of siderophore-iron in the cell wall. | 0.765 |
AFT1 | FRE1 | YGL071W | YLR214W | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Ferric/cupric reductase transmembrane component 1; Ferric reductase and cupric reductase; reduces siderophore-bound iron and oxidized copper prior to uptake by transporters; expression induced by low copper and iron levels. | 0.967 |
AFT1 | FRE5 | YGL071W | YOR384W | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Ferric reductase transmembrane component 5; Putative ferric reductase with similarity to Fre2p; expression induced by low iron levels; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies. | 0.885 |
AFT1 | FTR1 | YGL071W | YER145C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | High affinity iron permease; involved in the transport of iron across the plasma membrane; forms complex with Fet3p; expression is regulated by iron; protein abundance increases in response to DNA replication stress; Belongs to the oxidase-dependent Fe transporter (OFeT) (TC 9.A.10.1) family. | 0.934 |