STRINGSTRING
BLM10 BLM10 RPN11 RPN11 PMA1 PMA1 RPT6 RPT6 STS1 STS1 GSP1 GSP1 NUP2 NUP2 KAP95 KAP95 DCP2 DCP2 SRP1 SRP1 ULP1 ULP1 HTB2 HTB2 PGK1 PGK1 HTB1 HTB1 PRE1 PRE1 RPN3 RPN3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
BLM10Proteasome activator; binds the core proteasome (CP) and stimulates proteasome-mediated protein degradation by inducing gate opening; required for sequestering CP into proteasome storage granule (PSG) during quiescent phase and for nuclear import of CP in proliferating cells; required for resistance to bleomycin, may be involved in protecting against oxidative damage; similar to mammalian PA200. (2143 aa)
RPN11Ubiquitin carboxyl-terminal hydrolase RPN11; Metalloprotease subunit of 19S regulatory particle; part of 26S proteasome lid; couples the deubiquitination and degradation of proteasome substrates; involved, independent of catalytic activity, in fission of mitochondria and peroxisomes; protein abundance increases in response to DNA replication stress. (306 aa)
PMA1Plasma membrane P2-type H+-ATPase; pumps protons out of cell; major regulator of cytoplasmic pH and plasma membrane potential; long-lived protein asymmetrically distributed at plasma membrane between mother cells and buds; accumulates at high levels in mother cells during aging, buds emerge with very low levels of Pma1p, newborn cells have low levels of Pma1p; Hsp30p plays a role in Pma1p regulation; interactions with Std1p appear to propagate [GAR+]; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. (918 aa)
RPT6ATPase of the 19S regulatory particle of the 26S proteasome; one of six ATPases of the regulatory particle; involved in the degradation of ubiquitinated substrates; bound by ubiquitin-protein ligases Ubr1p and Ufd4p; localized mainly to the nucleus throughout the cell cycle; protein abundance increases in response to DNA replication stress. (405 aa)
STS1Tethering factor for nuclear proteasome STS1; Protein required for localizing proteasomes to the nucleus; involved in cotranslational protein degradation; mediates interaction between nuclear import factor Srp1p and the proteasome; Sts1p and Srp1p couple proteasomes to nascent polypeptides emerging from the ribosome for cotranslational degradation; involved in ubiquitin-mediated protein degradation; Belongs to the cut8/STS1 family. (319 aa)
GSP1GTP-binding nuclear protein GSP1/CNR1; Ran GTPase; GTP binding protein (mammalian Ranp homolog) involved in the maintenance of nuclear organization, RNA processing and transport; regulated by Srm1p, Rna1p, Yrb1p, Yrb2p, Yrp4p, Yrb30p, Cse1p and Kap95p; GSP1 has a paralog, GSP2, that arose from the whole genome duplication; Belongs to the small GTPase superfamily. Ran family. (219 aa)
NUP2Nucleoporin involved in nucleocytoplasmic transport; binds to either the nucleoplasmic or cytoplasmic faces of the nuclear pore complex depending on Ran-GTP levels; also has a role in chromatin organization. (720 aa)
KAP95Importin subunit beta-1; Karyopherin beta; forms a complex with Srp1p/Kap60p; interacts with nucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates PC biosynthesis; GDP-to-GTP exchange factor for Gsp1p. (861 aa)
DCP2m7GpppN-mRNA hydrolase; Catalytic subunit of Dcp1p-Dcp2p decapping enzyme complex; removes 5' cap structure from mRNAs prior to their degradation; also enters nucleus and positively regulates transcription initiation; nudix hydrolase family member; forms cytoplasmic foci upon DNA replication stress; human homolog DCP2 complements yeast dcp2 thermosensitive mutant. (970 aa)
SRP1Importin subunit alpha; Karyopherin alpha homolog; forms a dimer with karyopherin beta Kap95p to mediate import of nuclear proteins, binds the nuclear localization signal of the substrate during import; involved in cotranslational protein degradation; binds ribosome-bound nascent polypeptides; Srp1p and Sts1p couple proteasomes to nascent polypeptides emerging from the ribosome for cotranslational degradation. (542 aa)
ULP1Ubiquitin-like-specific protease 1; Protease that specifically cleaves Smt3p protein conjugates; required for cell cycle progression; associates with nucleoporins and may interact with septin rings during telophase; sequestered to the nucleolus under stress conditions. (621 aa)
HTB2Histone H2B; core histone protein required for chromatin assembly and chromosome function; nearly identical to HTB1; Rad6p-Bre1p-Lge1p mediated ubiquitination regulates reassembly after DNA replication, transcriptional activation, meiotic DSB formation and H3 methylation. (131 aa)
PGK13-phosphoglycerate kinase; catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis. (416 aa)
HTB1Histone H2B; core histone protein required for chromatin assembly and chromosome function; nearly identical to HTB2; Rad6p-Bre1p-Lge1p mediated ubiquitination regulates reassembly after DNA replication, transcriptional activation, meiotic DSB formation and H3 methylation. (131 aa)
PRE1Beta 4 subunit of the 20S proteasome; localizes to the nucleus throughout the cell cycle; Belongs to the peptidase T1B family. (198 aa)
RPN3Essential non-ATPase regulatory subunit of the 26S proteasome lid; similar to the p58 subunit of the human 26S proteasome; temperature-sensitive alleles cause metaphase arrest, suggesting a role for the proteasome in cell cycle control. (523 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (30%) [HD]