STRINGSTRING
DUR1,2 DUR1,2 STE7 STE7 STE5 STE5 CAR2 CAR2 CAR1 CAR1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
DUR1,2Allophanate hydrolase; Urea amidolyase; contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; protein abundance increases in response to DNA replication stress. (1835 aa)
STE7Serine/threonine-protein kinase STE7; Signal transducing MAP kinase kinase; involved in pheromone response where it phosphorylates Fus3p; involved in the pseudohyphal/invasive growth pathway where it phosphorylates of Kss1p; phosphorylated by Ste11p; degraded by ubiquitin pathway. (515 aa)
STE5Protein STE5; Pheromone-responsive MAPK scaffold protein; couples activation of the G-protein-coupled pheromone receptor to MAPK activation; intramolecular interaction of PH and VWA domains blocks activation of assembled signaling cascade components (Ste11p, Ste7p and Fus3p) under basal conditions; Gbeta-gamma (Ste4p-Ste18p)-dependent docking at the plasma membrane and binding of PI(4,5)P2 by the PH domain relieves autoinhibition, resulting in pheromone-dependent pathway activation. (917 aa)
CAR2L-ornithine transaminase (OTAse); catalyzes the second step of arginine degradation, expression is dually-regulated by allophanate induction and a specific arginine induction process; not nitrogen catabolite repression sensitive; protein abundance increases in response to DNA replication stress; human homolog OAT complements yeast null mutant. (424 aa)
CAR1Arginase, catabolizes arginine to ornithine and urea; expression responds to both induction by arginine and nitrogen catabolite repression; disruption decreases production of carcinogen ethyl carbamate during wine fermentation and also enhances freeze tolerance. (333 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: medium (42%) [HD]