STRINGSTRING
URA7 URA7 YSA1 YSA1 DUT1 DUT1 YBR284W YBR284W FAP7 FAP7 GUD1 GUD1 DAS2 DAS2 ADK1 ADK1 GUK1 GUK1 GDA1 GDA1 YND1 YND1 ADK2 ADK2 ADE5,7 ADE5,7 ADE6 ADE6 IMD2 IMD2 YJL070C YJL070C URA2 URA2 HAM1 HAM1 URA8 URA8 ADO1 ADO1 URA6 URA6 YKL033W-A YKL033W-A YNK1 YNK1 PNP1 PNP1 CDD1 CDD1 ADE13 ADE13 IMD3 IMD3 APT1 APT1 AMD1 AMD1 IMD4 IMD4 ADE17 ADE17 GUA1 GUA1 ADE12 ADE12 URK1 URK1 CDC21 CDC21 GLR1 GLR1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
URA7Major CTP synthase isozyme (see also URA8); catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to UTP, forming CTP, the final step in de novo biosynthesis of pyrimidines; involved in phospholipid biosynthesis; capable of forming cytoplasmic filaments termed cytoophidium, especially during conditions of glucose depletion; URA7 has a paralog, URA8, that arose from the whole genome duplication. (579 aa)
YSA1Nudix hydrolase family member with ADP-ribose pyrophosphatase activity; shown to metabolize O-acetyl-ADP-ribose to AMP and acetylated ribose 5'-phosphate; Belongs to the Nudix hydrolase family. NudF subfamily. (231 aa)
DUT1Deoxyuridine 5'-triphosphate nucleotidohydrolase; Deoxyuridine triphosphate diphosphatase (dUTPase); catalyzes hydrolysis of dUTP to dUMP and PPi, thereby preventing incorporation of uracil into DNA during replication; critical for the maintenance of genetic stability; also has diphosphatase activity on deoxyinosine triphosphate; human homolog DUT allows growth of yeast haploid dut1 null mutant after sporulation of heterozygous diploid. (147 aa)
YBR284WInactive deaminase YBR284W; Putative metallo-dependent hydrolase superfamily protein; similar to AMP deaminases but lacks key catalytic residues and does not rescue purine nucleotide metabolic defect of quadruple aah1 ade8 amd1 his1 mutant; null mutant exhibits longer telomeres, altered Ty mobility, decreased resistance to rapamycin and wortmannin; induced in response to hydrostatic pressure; not an essential gene; YBR284W has a paralog, YJL070C, that arose from the whole genome duplication. (797 aa)
FAP7Adenylate kinase isoenzyme 6 homolog FAP7; Essential NTPase required for small ribosome subunit synthesis; mediates processing of the 20S pre-rRNA at site D in the cytoplasm but associates only transiently with 43S preribosomes via Rps14p; complex with Rps14 is conserved between humans, yeast, and arches; may be the endonuclease for site D; depletion leads to accumulation of pre-40S ribosomes in 80S-like ribosomes; human TAF9 functionally complements the lethality of the null mutation. (197 aa)
GUD1Guanine deaminase; a catabolic enzyme of the guanine salvage pathway producing xanthine and ammonia from guanine; activity is low in exponentially-growing cultures but expression is increased in post-diauxic and stationary-phase cultures. (489 aa)
DAS2Putative uridine kinase DAS2; Putative protein of unknown function; non-essential gene identified in a screen for mutants with increased levels of rDNA transcription; weak similarity with uridine kinases and with phosphoribokinases; Belongs to the uridine kinase family. (232 aa)
ADK1Adenylate kinase, required for purine metabolism; localized to the cytoplasm and the mitochondria; lacks cleavable signal sequence; protein abundance increases in response to DNA replication stress; mutations affecting Adk1p catalytic activity deregulate expression of phosphate utilization genes PHO5 and PHO84; human homolog AK1 can complement yeast adk1 mutant. (222 aa)
GUK1Guanylate kinase; converts GMP to GDP; required for growth and mannose outer chain elongation of cell wall N-linked glycoproteins. (187 aa)
GDA1Guanosine-diphosphatase; Guanosine diphosphatase located in the Golgi; involved in the transport of GDP-mannose into the Golgi lumen, converting GDP to GMP after mannose is transferred to substrates; null mutants are defective in sporulation and pre-meiotic S phase entry; orthologous to human ENTPD6, a meiosis-associated non-obstructive azoospermia (NOA) related gene identified in GWAS studies; Belongs to the GDA1/CD39 NTPase family. (518 aa)
YND1Apyrase with wide substrate specificity; helps prevent inhibition of glycosylation by hydrolyzing nucleoside tri- and diphosphates that inhibit glycotransferases; partially redundant with Gda1p; mediates adenovirus E4orf4-induced toxicity. (630 aa)
ADK2GTP:AMP phosphotransferase, mitochondrial; Mitochondrial adenylate kinase; catalyzes the reversible synthesis of GTP and AMP from GDP and ADP; may serve as a back-up for synthesizing GTP or ADP depending on metabolic conditions; 3' sequence of ADK2 varies with strain background. (225 aa)
ADE5,7Bifunctional purine biosynthetic protein ADE5,7; Enzyme of the 'de novo' purine nucleotide biosynthetic pathway; contains aminoimidazole ribotide synthetase and glycinamide ribotide synthetase activities; In the C-terminal section; belongs to the AIR synthase family. (802 aa)
ADE6Phosphoribosylformylglycinamidine synthase; Formylglycinamidine-ribonucleotide (FGAM)-synthetase; catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway. (1358 aa)
IMD2Inosine-5'-monophosphate dehydrogenase 2; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitation; IMD2 has a paralog, YAR073W/YAR075W, that arose from a segmental duplication. (523 aa)
YJL070CInactive deaminase YJL070C; Putative metallo-dependent hydrolase superfamily protein; similar to AMP deaminases but lacks key catalytic residues and does not rescue purine nucleotide metabolic defect of quadruple aah1 ade8 amd1 his1 mutant; may regulate purine nucleotide homeostasis as overexpression in an AMD1 strain grown in adenine results in greatly reduced GDP and GTP intracellular levels; not an essential gene; YJL070C has a paralog, YBR284W, that arose from the whole genome duplication. (888 aa)
URA2Glutamine-dependent carbamoyl-phosphate synthase; Bifunctional carbamoylphosphate synthetase/aspartate transcarbamylase; catalyzes the first two enzymatic steps in the de novo biosynthesis of pyrimidines; both activities are subject to feedback inhibition by UTP; In the central section; belongs to the metallo-dependent hydrolases superfamily. DHOase family. CAD subfamily. (2214 aa)
HAM1Inosine triphosphate pyrophosphatase; Nucleoside triphosphate pyrophosphohydrolase; active against various substrates including ITP, dITP and XTP; mediates exclusion of non canonical purines, pyrimidines from dNTP pools; functions with YJL055W to mediate resistance to 5-FU; specifically reduces the incorporation of 5-FU into RNA without affecting uptake or incorporation of uracil into RNA; protein abundance increases in response to DNA replication stress; yeast HAM1 can complement knockdown of human homolog ITPA. (197 aa)
URA8Minor CTP synthase isozyme (see also URA7); catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to UTP, forming CTP, the final step in de novo biosynthesis of pyrimidines; involved in phospholipid biosynthesis; capable of forming cytoplasmic filaments termed cytoophidium, especially during conditions of glucose depletion; URA8 has a paralog, URA7, that arose from the whole genome duplication. (578 aa)
ADO1Adenosine kinase; required for the utilization of S-adenosylmethionine (AdoMet); may be involved in recycling adenosine produced through the methyl cycle. (340 aa)
URA6Uridylate kinase; catalyzes the seventh enzymatic step in the de novo biosynthesis of pyrimidines, converting uridine monophosphate (UMP) into uridine-5'-diphosphate (UDP); Belongs to the adenylate kinase family. UMP-CMP kinase subfamily. (204 aa)
YKL033W-AUncharacterized hydrolase YKL033W-A; Putative protein of unknown function; similar to uncharacterized proteins from other fungi; Belongs to the HAD-like hydrolase superfamily. (236 aa)
YNK1Nucleoside diphosphate kinase; catalyzes the transfer of gamma phosphates from nucleoside triphosphates, usually ATP, to nucleoside diphosphates by a mechanism that involves formation of an autophosphorylated enzyme intermediate; protein abundance increases in response to DNA replication stress. (153 aa)
PNP1Purine nucleoside phosphorylase; specifically metabolizes inosine and guanosine nucleosides; involved in the nicotinamide riboside salvage pathway; Belongs to the PNP/MTAP phosphorylase family. (311 aa)
CDD1Cytidine deaminase; catalyzes the modification of cytidine to uridine in vitro but native RNA substrates have not been identified, localizes to both the nucleus and cytoplasm. (142 aa)
ADE13Adenylosuccinate lyase; catalyzes two steps in the 'de novo' purine nucleotide biosynthetic pathway; expression is repressed by adenine and activated by Bas1p and Pho2p; mutations in human ortholog ADSL cause adenylosuccinase deficiency; human ADSL can complement yeast ADE13 null mutant. (482 aa)
IMD3Inosine-5'-monophosphate dehydrogenase 3; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in the de novo synthesis of GTP; member of a four-gene family in S. cerevisiae, constitutively expressed; IMD3 has a paralog, IMD4, that arose from the whole genome duplication; Belongs to the IMPDH/GMPR family. (523 aa)
APT1Adenine phosphoribosyltransferase; catalyzes the formation of AMP from adenine and 5-phosphoribosylpyrophosphate; involved in the salvage pathway of purine nucleotide biosynthesis; APT1 has a paralog, APT2, that arose from the whole genome duplication. (187 aa)
AMD1AMP deaminase; tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; thought to be involved in regulation of intracellular purine (adenine, guanine, and inosine) nucleotide pools. (810 aa)
IMD4Inosine-5'-monophosphate dehydrogenase 4; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in the de novo synthesis of GTP; member of a four-gene family in S. cerevisiae, constitutively expressed; IMD4 has a paralog, IMD3, that arose from the whole genome duplication. (524 aa)
ADE17Phosphoribosylaminoimidazolecarboxamide formyltransferase; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE17 has a paralog, ADE16, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family. (592 aa)
GUA1GMP synthase; highly conserved enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5'-phosphate (IMP); transcription is not subject to regulation by guanine but is negatively regulated by nutrient starvation; reduction-of-function mutation gua1-G388D causes changes in cellular guanine nucleotide pools, defects in general protein synthesis, and impaired translation of GCN4 mRNA. (525 aa)
ADE12Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence. (433 aa)
URK1Uridine/cytidine kinase; component of the pyrimidine ribonucleotide salvage pathway that converts uridine into UMP and cytidine into CMP; involved in the pyrimidine deoxyribonucleotide salvage pathway, converting deoxycytidine into dCMP. (501 aa)
CDC21Thymidylate synthase; required for de novo biosynthesis of pyrimidine deoxyribonucleotides; expression is induced at G1/S; human homolog TYMSOS can complement yeast cdc21 temperature-sensitive mutant at restrictive temperature. (304 aa)
GLR1Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress. (483 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (14%) [HD]