STRINGSTRING
FUN12 FUN12 RPL19B RPL19B RPS8A RPS8A RPL23A RPL23A RPL32 RPL32 RPL4A RPL4A RPS11B RPS11B RPS6B RPS6B RPS9B RPS9B RPL21A RPL21A RPP1A RPP1A RPS16B RPS16B RPL35B RPL35B RPL4B RPL4B RPS13 RPS13 RPP2B RPP2B RPL12B RPL12B RPS17B RPS17B RPS18A RPS18A RPL37B RPL37B RPS24A RPS24A RPL2A RPL2A RPL29 RPL29 RPL30 RPL30 RPL24A RPL24A RPL7A RPL7A RPL28 RPL28 RPS2 RPS2 RPL1B RPL1B RPS26A RPS26A RPS25A RPS25A RPL26B RPL26B RPL11B RPL11B RPS23A RPS23A RPS0A RPS0A RPL14B RPL14B RPS20 RPS20 RPL27A RPL27A RPS27B RPS27B RPL42B RPL42B RPS4B RPS4B RPL16A RPL16A RPS21B RPS21B RPL39 RPL39 RPS22A RPS22A RPS14B RPS14B RPS5 RPS5 RPS27A RPS27A RPL17A RPL17A RPL8B RPL8B RPL15A RPL15A RPL10 RPL10 RPL37A RPL37A RPS28B RPS28B RPL38 RPL38 RPS25B RPS25B RPP0 RPP0 RPL26A RPL26A RPS29A RPS29A RPL31B RPL31B RPL6B RPL6B RPS17A RPS17A RPS1B RPS1B RPL6A RPL6A RPL15B RPL15B RPL13B RPL13B RPS10B RPS10B RPL20A RPL20A RPL9B RPL9B RPS3 RPS3 RPL18B RPL18B RPS19B RPS19B RPS15 RPS15 RPS19A RPS19A RPL25 RPL25 RPL3 RPL3 RPS7A RPS7A RPS28A RPS28A RPS12 RPS12 RPL5 RPL5 RPL33A RPL33A RPL36B RPL36B RPL11A RPL11A
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
FUN12Translation initiation factor eIF5B; GTPase that promotes Met-tRNAiMet binding to ribosomes and ribosomal subunit joining; promotes GTP-dependent maturation of 18S rRNA by Nob1p; protein abundance increases in response to DNA replication stress; homolog of bacterial IF2. (1002 aa)
RPL19BRibosomal 60S subunit protein L19B; rpl19a and rpl19b single null mutations result in slow growth, while the double null mutation is lethal; homologous to mammalian ribosomal protein L19, no bacterial homolog; RPL19B has a paralog, RPL19A, that arose from the whole genome duplication. (189 aa)
RPS8AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S8, no bacterial homolog; RPS8A has a paralog, RPS8B, that arose from the whole genome duplication. (200 aa)
RPL23ARibosomal 60S subunit protein L23A; homologous to mammalian ribosomal protein L23 and bacterial L14; RPL23A has a paralog, RPL23B, that arose from the whole genome duplication. (137 aa)
RPL32Ribosomal 60S subunit protein L32; overexpression disrupts telomeric silencing; homologous to mammalian ribosomal protein L32, no bacterial homolog. (130 aa)
RPL4ARibosomal 60S subunit protein L4A; N-terminally acetylated; homologous to mammalian ribosomal protein L4 and bacterial L4; RPL4A has a paralog, RPL4B, that arose from the whole genome duplication. (362 aa)
RPS11BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S11 and bacterial S17; RPS11B has a paralog, RPS11A, that arose from the whole genome duplication. (156 aa)
RPS6BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S6, no bacterial homolog; phosphorylated on S233 by Ypk3p in a TORC1-dependent manner, and on S232 in a TORC1/2-dependent manner by Ypk1/2/3p; RPS6B has a paralog, RPS6A, that arose from the whole genome duplication. (236 aa)
RPS9BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S9 and bacterial S4; RPS9B has a paralog, RPS9A, that arose from the whole genome duplication. (195 aa)
RPL21ARibosomal 60S subunit protein L21A; homologous to mammalian ribosomal protein L21, no bacterial homolog; RPL21A has a paralog, RPL21B, that arose from the whole genome duplication. (160 aa)
RPP1A60S acidic ribosomal protein P1-alpha; Ribosomal stalk protein P1 alpha; involved in the interaction between translational elongation factors and the ribosome; free (non-ribosomal) P1 stimulates the phosphorylation of the eIF2 alpha subunit (Sui2p) by Gcn2p; accumulation of P1 in the cytoplasm is regulated by phosphorylation and interaction with the P2 stalk component. (106 aa)
RPS16BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S16 and bacterial S9; RPS16B has a paralog, RPS16A, that arose from the whole genome duplication. (143 aa)
RPL35BRibosomal 60S subunit protein L35B; homologous to mammalian ribosomal protein L35 and bacterial L29; RPL35B has a paralog, RPL35A, that arose from the whole genome duplication. (120 aa)
RPL4BRibosomal 60S subunit protein L4B; homologous to mammalian ribosomal protein L4 and bacterial L4; RPL4B has a paralog, RPL4A, that arose from the whole genome duplication. (362 aa)
RPS13Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S13 and bacterial S15. (151 aa)
RPP2B60S acidic ribosomal protein P2-beta; Ribosomal protein P2 beta; a component of the ribosomal stalk, which is involved in the interaction between translational elongation factors and the ribosome; free (non-ribosomal) P2 stimulates the phosphorylation of the eIF2 alpha subunit (Sui2p) by Gcn2p; regulates the accumulation of P1 (Rpp1Ap and Rpp1Bp) in the cytoplasm. (110 aa)
RPL12BRibosomal 60S subunit protein L12B; rpl12a rpl12b double mutant exhibits slow growth and slow translation; homologous to mammalian ribosomal protein L12 and bacterial L11; RPL12B has a paralog, RPL12A, that arose from the whole genome duplication. (165 aa)
RPS17BRibosomal protein 51 (rp51) of the small (40s) subunit; homologous to mammalian ribosomal protein S17, no bacterial homolog; RPS17B has a paralog, RPS17A, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress. (136 aa)
RPS18AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S18 and bacterial S13; RPS18A has a paralog, RPS18B, that arose from the whole genome duplication; protein increases in abundance and relocalizes from cytoplasm to nuclear foci upon DNA replication stress. (146 aa)
RPL37BRibosomal 60S subunit protein L37B; required for processing of 27SB pre-rRNA and formation of stable 66S assembly intermediates; protein abundance increases in response to DNA replication stress; homologous to mammalian ribosomal protein L37, no bacterial homolog; RPL37B has a paralog, RPL37A, that arose from the whole genome duplication. (88 aa)
RPS24AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S24, no bacterial homolog; RPS24A has a paralog, RPS24B, that arose from the whole genome duplication. (135 aa)
RPL2ARibosomal 60S subunit protein L2A; homologous to mammalian ribosomal protein L2 and bacterial L2; RPL2A has a paralog, RPL2B, that arose from the whole genome duplication. (254 aa)
RPL29Ribosomal 60S subunit protein L29; not essential for translation, but required for proper joining of large and small ribosomal subunits and for normal translation rate; homologous to mammalian ribosomal protein L29, no bacterial homolog; Belongs to the eukaryotic ribosomal protein eL29 family. (59 aa)
RPL30Ribosomal 60S subunit protein L30; involved in pre-rRNA processing in the nucleolus; autoregulates splicing of its transcript; homologous to mammalian ribosomal protein L30, no bacterial homolog. (105 aa)
RPL24ARibosomal 60S subunit protein L24A; not essential for translation but may be required for normal translation rate; homologous to mammalian ribosomal protein L24, no bacterial homolog; RPL24A has a paralog, RPL24B, that arose from the whole genome duplication. (155 aa)
RPL7ARibosomal 60S subunit protein L7A; required for processing of 27SA3 pre-rRNA to 27SB pre-rRNA during assembly of large ribosomal subunit; depletion leads to a turnover of pre-rRNA; contains a conserved C-terminal Nucleic acid Binding Domain (NDB2); binds to Domain II of 25S and 5.8S rRNAs; homologous to mammalian ribosomal protein L7 and bacterial L30; RPL7A has a paralog, RPL7B, that arose from the whole genome duplication. (244 aa)
RPL28Ribosomal 60S subunit protein L28; homologous to mammalian ribosomal protein L27A and bacterial L15; may have peptidyl transferase activity; can mutate to cycloheximide resistance. (149 aa)
RPS2Protein component of the small (40S) subunit; essential for control of translational accuracy; phosphorylation by C-terminal domain kinase I (CTDK-I) enhances translational accuracy; methylated on one or more arginine residues by Hmt1p; homologous to mammalian ribosomal protein S2 and bacterial S5. (254 aa)
RPL1BRibosomal 60S subunit protein L1B; N-terminally acetylated; homologous to mammalian ribosomal protein L10A and bacterial L1; RPL1B has a paralog, RPL1A, that arose from the whole genome duplication; rpl1a rpl1b double null mutation is lethal. (217 aa)
RPS26AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S26, no bacterial homolog; RPS26A has a paralog, RPS26B, that arose from the whole genome duplication; human homolog can partially complement an RPS26A, RPS26B double null mutant; mutations in the human gene are associated with Diamond-Blackfan anemia. (119 aa)
RPS25AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S25, no bacterial homolog; RPS25A has a paralog, RPS25B, that arose from the whole genome duplication. (108 aa)
RPL26BRibosomal 60S subunit protein L26B; binds to 5.8S rRNA; non-essential even when paralog is also deleted; deletion has minimal affections on ribosome biosynthesis; homologous to mammalian ribosomal protein L26 and bacterial L24; RPL26B has a paralog, RPL26A, that arose from the whole genome duplication. (127 aa)
RPL11BRibosomal 60S subunit protein L11B; expressed at half the level of Rpl11Ap; involved in ribosomal assembly; depletion causes degradation of 60S proteins and RNA; homologous to mammalian ribosomal protein L11 and bacterial L5; RPL11B has a paralog, RPL11A, that arose from the whole genome duplication. (174 aa)
RPS23ARibosomal protein 28 (rp28) of the small (40S) ribosomal subunit; required for translational accuracy; homologous to mammalian ribosomal protein S23 and bacterial S12; RPS23A has a paralog, RPS23B, that arose from the whole genome duplication; deletion of both RPS23A and RPS23B is lethal. (145 aa)
RPS0ARibosomal 40S subunit protein S0A; required for maturation of 18S rRNA along with Rps0Bp; deletion of either RPS0 gene reduces growth rate, deletion of both genes is lethal; homologous to human ribosomal protein SA and bacterial S2; RPS0A has a paralog, RPS0B, that arose from the whole genome duplication. (252 aa)
RPL14BRibosomal 60S subunit protein L14B; homologous to mammalian ribosomal protein L14, no bacterial homolog; RPL14B has a paralog, RPL14A, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress. (138 aa)
RPS20Protein component of the small (40S) ribosomal subunit; overproduction suppresses mutations affecting RNA polymerase III-dependent transcription; homologous to mammalian ribosomal protein S20 and bacterial S10. (121 aa)
RPL27ARibosomal 60S subunit protein L27A; homologous to mammalian ribosomal protein L27, no bacterial homolog; RPL27A has a paralog, RPL27B, that arose from the whole genome duplication. (136 aa)
RPS27BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S27, no bacterial homolog; RPS27B has a paralog, RPS27A, that arose from the whole genome duplication. (82 aa)
RPL42BRibosomal 60S subunit protein L42B; required for propagation of the killer toxin-encoding M1 double-stranded RNA satellite of the L-A double-stranded RNA virus; homologous to mammalian ribosomal protein L36A, no bacterial homolog; RPL42B has a paralog, RPL42A, that arose from the whole genome duplication. (106 aa)
RPS4BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S4, no bacterial homolog; RPS4B has a paralog, RPS4A, that arose from the whole genome duplication. (261 aa)
RPL16ARibosomal 60S subunit protein L16A; N-terminally acetylated, binds 5.8 S rRNA; transcriptionally regulated by Rap1p; homologous to mammalian ribosomal protein L13A and bacterial L13; RPL16A has a paralog, RPL16B, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress. (199 aa)
RPS21BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S21, no bacterial homolog; RPS21B has a paralog, RPS21A, that arose from the whole genome duplication. (87 aa)
RPL39Ribosomal 60S subunit protein L39; required for ribosome biogenesis; loss of both Rpl31p and Rpl39p confers lethality; also exhibits genetic interactions with SIS1 and PAB1; homologous to mammalian ribosomal protein L39, no bacterial homolog. (51 aa)
RPS22AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S15A and bacterial S8; RPS22A has a paralog, RPS22B, that arose from the whole genome duplication. (130 aa)
RPS14BProtein component of the small (40S) ribosomal subunit; required for ribosome assembly and 20S pre-rRNA processing; mutations confer cryptopleurine resistance; homologous to mammalian ribosomal protein S14 and bacterial S11; RPS14B has a paralog, RPS14A, that arose from the whole genome duplication. (138 aa)
RPS5Protein component of the small (40S) ribosomal subunit; least basic of non-acidic ribosomal proteins; phosphorylated in vivo; essential for viability; homologous to mammalian ribosomal protein S5 and bacterial S7. (225 aa)
RPS27AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S27, no bacterial homolog; RPS27A has a paralog, RPS27B, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress. (82 aa)
RPL17ARibosomal 60S subunit protein L17A; required for processing of 27SB pre-rRNA and formation of stable 66S assembly intermediates; copurifies with the Dam1 complex (aka DASH complex); homologous to mammalian ribosomal protein L17 and bacterial L22; RPL17A has a paralog, RPL17B, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress. (184 aa)
RPL8BRibosomal 60S subunit protein L8B; required for processing of 27SA3 pre-rRNA to 27SB pre-rRNA during assembly of large ribosomal subunit; depletion leads to a turnover of pre-rRNA; L8 binds to Domain I of 25S and 5.8 S rRNAs; mutation results in decreased amounts of free 60S subunits; homologous to mammalian ribosomal protein L7A, no bacterial homolog; RPL8B has a paralog, RPL8A, that arose from the whole genome duplication. (256 aa)
RPL15ARibosomal 60S subunit protein L15A; binds to 5.8 S rRNA; homologous to mammalian ribosomal protein L15, no bacterial homolog; RPL15A has a paralog, RPL15B, that arose from the whole genome duplication. (204 aa)
RPL10Ribosomal 60S subunit protein L10; homologous to mammalian ribosomal protein L10 and bacterial L16; responsible for joining the 40S and 60S subunits; regulates translation initiation; similar to members of the QM gene family; protein abundance increases under DNA replication stress; mutations in human homolog implicated in T-cell acute lymphoblastic leukemia and also autism spectrum disorders (ASD); human RPL10 can complement yeast null mutant. (221 aa)
RPL37ARibosomal 60S subunit protein L37A; required for processing of 27SB pre-rRNA and formation of stable 66S assembly intermediates; homologous to mammalian ribosomal protein L37, no bacterial homolog; RPL37A has a paralog, RPL37B, that arose from the whole genome duplication. (88 aa)
RPS28BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S28, no bacterial homolog; has an extraribosomal function in autoregulation, in which Rps28Bp binds to a decapping complex via Edc3p, which then binds to RPS28B mRNA leading to its decapping and degradation; RPS28B has a paralog, RPS28A, that arose from the whole genome duplication. (67 aa)
RPL38Ribosomal 60S subunit protein L38; homologous to mammalian ribosomal protein L38, no bacterial homolog; Belongs to the eukaryotic ribosomal protein eL38 family. (78 aa)
RPS25BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S25, no bacterial homolog; RPS25B has a paralog, RPS25A, that arose from the whole genome duplication. (108 aa)
RPP0Conserved ribosomal protein P0 of the ribosomal stalk; involved in interaction between translational elongation factors and the ribosome; phosphorylated on serine 302; homologous to mammalian ribosomal protein LP0 and bacterial L10. (312 aa)
RPL26ARibosomal 60S subunit protein L26A; binds to 5.8S rRNA; non-essential even when paralog is also deleted; deletion has minimal affections on ribosome biosynthesis; homologous to mammalian ribosomal protein L26 and bacterial L24; RPL26A has a paralog, RPL26B, that arose from the whole genome duplication. (127 aa)
RPS29AProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S29 and bacterial S14; RPS29A has a paralog, RPS29B, that arose from the whole genome duplication. (56 aa)
RPL31BRibosomal 60S subunit protein L31B; associates with karyopherin Sxm1p; loss of both Rpl31p and Rpl39p confers lethality; homologous to mammalian ribosomal protein L31, no bacterial homolog; RPL31B has a paralog, RPL31A, that arose from the whole genome duplication. (113 aa)
RPL6BRibosomal 60S subunit protein L6B; binds 5.8S rRNA; homologous to mammalian ribosomal protein L6, no bacterial homolog; RPL6B has a paralog, RPL6A, that arose from the whole genome duplication. (176 aa)
RPS17ARibosomal protein 51 (rp51) of the small (40s) subunit; homologous to mammalian ribosomal protein S17, no bacterial homolog; RPS17A has a paralog, RPS17B, that arose from the whole genome duplication. (136 aa)
RPS1BRibosomal protein 10 (rp10) of the small (40S) subunit; homologous to mammalian ribosomal protein S3A, no bacterial homolog; RPS1B has a paralog, RPS1A, that arose from the whole genome duplication. (255 aa)
RPL6ARibosomal 60S subunit protein L6A; N-terminally acetylated; binds 5.8S rRNA; homologous to mammalian ribosomal protein L6, no bacterial homolog; RPL6A has a paralog, RPL6B, that arose from the whole genome duplication. (176 aa)
RPL15BRibosomal 60S subunit protein L15B; binds to 5.8 S rRNA; homologous to mammalian ribosomal protein L15, no bacterial homolog; RPL15B has a paralog, RPL15A, that arose from the whole genome duplication; relocalizes from nucleus to nucleolus upon DNA replication stress. (204 aa)
RPL13BRibosomal 60S subunit protein L13B; not essential for viability; homologous to mammalian ribosomal protein L13, no bacterial homolog; RPL13B has a paralog, RPL13A, that arose from the whole genome duplication. (199 aa)
RPS10BProtein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S10, no bacterial homolog; RPS10B has a paralog, RPS10A, that arose from the whole genome duplication; mutations in the human homolog associated with Diamond-Blackfan anemia. (105 aa)
RPL20ARibosomal 60S subunit protein L20A; homologous to mammalian ribosomal protein L18A, no bacterial homolog; RPL20A has a paralog, RPL20B, that arose from the whole genome duplication. (171 aa)
RPL9BRibosomal 60S subunit protein L9B; homologous to mammalian ribosomal protein L9 and bacterial L6; RPL9B has a paralog, RPL9A, that arose from a single-locus duplication. (191 aa)
RPS3Protein component of the small (40S) ribosomal subunit; has apurinic/apyrimidinic (AP) endonuclease activity; essential for viability; nascent Rps3p is bound by specific chaperone Yar1p during translation; homologous to mammalian ribosomal protein S3 and bacterial S3. (240 aa)
RPL18BRibosomal 60S subunit protein L18B; homologous to mammalian ribosomal protein L18, no bacterial homolog; RPL18B has a paralog, RPL18A, that arose from the whole genome duplication. (186 aa)
RPS19BProtein component of the small (40S) ribosomal subunit; required for assembly and maturation of pre-40 S particles; homologous to mammalian ribosomal protein S19, no bacterial homolog; mutations in human RPS19 are associated with Diamond Blackfan anemia; RPS19B has a paralog, RPS19A, that arose from the whole genome duplication. (144 aa)
RPS15Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S15 and bacterial S19. (142 aa)
RPS19AProtein component of the small (40S) ribosomal subunit; required for assembly and maturation of pre-40 S particles; homologous to mammalian ribosomal protein S19, no bacterial homolog; mutations in human RPS19 are associated with Diamond Blackfan anemia; RPS19A has a paralog, RPS19B, that arose from the whole genome duplication. (144 aa)
RPL25Ribosomal 60S subunit protein L25; primary rRNA-binding ribosomal protein component of large ribosomal subunit; binds to 25S rRNA via a conserved C-terminal motif; homologous to mammalian ribosomal protein L23A and bacterial L23; Belongs to the universal ribosomal protein uL23 family. (142 aa)
RPL3Ribosomal 60S subunit protein L3; homologous to mammalian ribosomal protein L3 and bacterial L3; plays an important role in function of eIF5B in stimulating 3' end processing of 18S rRNA in context of 80S ribosomes that have not yet engaged in translation; involved in replication and maintenance of killer double stranded RNA virus; Belongs to the universal ribosomal protein uL3 family. (387 aa)
RPS7AProtein component of the small (40S) ribosomal subunit; interacts with Kti11p; deletion causes hypersensitivity to zymocin; homologous to mammalian ribosomal protein S7, no bacterial homolog; RPS7A has a paralog, RPS7B, that arose from the whole genome duplication. (190 aa)
RPS28AProtein component of the small (40S) ribosomal subunit; has an extraribosomal function in regulation of RPS28B, in which Rps28Ap binds to a decapping complex via Edc3p, which then binds to RPS28B mRNA leading to its decapping and degradation; homologous to mammalian ribosomal protein S28, no bacterial homolog; RPS28A has a paralog, RPS28B, that arose from the whole genome duplication. (67 aa)
RPS12Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S12, no bacterial homolog. (143 aa)
RPL5Ribosomal 60S subunit protein L5; nascent Rpl5p is bound by specific chaperone Syo1p during translation; homologous to mammalian ribosomal protein L5 and bacterial L18; binds 5S rRNA and is required for 60S subunit assembly; Belongs to the universal ribosomal protein uL18 family. (297 aa)
RPL33ARibosomal 60S subunit protein L33A; N-terminally acetylated; rpl33a null mutant exhibits slow growth while rpl33a rpl33b double null mutant is inviable; homologous to mammalian ribosomal protein L35A, no bacterial homolog; RPL33A has a paralog, RPL33B, that arose from the whole genome duplication. (107 aa)
RPL36BRibosomal 60S subunit protein L36B; binds to 5.8 S rRNA; homologous to mammalian ribosomal protein L36, no bacterial homolog; RPL36B has a paralog, RPL36A, that arose from the whole genome duplication. (100 aa)
RPL11ARibosomal 60S subunit protein L11A; expressed at twice the level of Rpl11Bp; involved in ribosomal assembly; depletion causes degradation of 60S proteins and RNA; homologous to mammalian ribosomal protein L11 and bacterial L5; RPL11A has a paralog, RPL11B, that arose from the whole genome duplication. (174 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (20%) [HD]