STRINGSTRING
VMA2 VMA2 VMA9 VMA9 RHB1 RHB1 VMA1 VMA1 VMA3 VMA3 VMA8 VMA8 VMA7 VMA7 GTR2 GTR2 VMA16 VMA16 VMA10 VMA10 KOG1 KOG1 VMA5 VMA5 TOR2 TOR2 VMA6 VMA6 GTR1 GTR1 STV1 STV1 LST8 LST8 VPH1 VPH1 VMA4 VMA4 VMA13 VMA13
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
VMA2V-type proton ATPase subunit B; Subunit B of V1 peripheral membrane domain of vacuolar H+-ATPase; electrogenic proton pump found throughout the endomembrane system; contains nucleotide binding sites; also detected in the cytoplasm; protein abundance increases in response to DNA replication stress; human homolog ATP6V1B1, implicated in autosomal-recessive distal renal tubular acidosis (RTA) with sensorineural deafness, complements yeast null mutant; Belongs to the ATPase alpha/beta chains family. (517 aa)
VMA9Vacuolar H+ ATPase subunit e of the V-ATPase V0 subcomplex; essential for vacuolar acidification; interacts with the V-ATPase assembly factor Vma21p in the ER; involved in V0 biogenesis. (73 aa)
RHB1Rheb-like protein RHB1; Putative Rheb-related GTPase; involved in regulating canavanine resistance and arginine uptake; member of the Ras superfamily of G-proteins. (209 aa)
VMA1Subunit A of the V1 peripheral membrane domain of V-ATPase; protein precursor undergoes self-catalyzed splicing to yield the extein Tfp1p and the intein Vde (PI-SceI), which is a site-specific endonuclease; the V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase) has eight subunits; involved in methionine restriction extension of chronological lifespan in an autophagy-dependent manner; Belongs to the ATPase alpha/beta chains family. (1071 aa)
VMA3V-type proton ATPase subunit c; Proteolipid subunit c of the V0 domain of vacuolar H(+)-ATPase; dicyclohexylcarbodiimide binding subunit; required for vacuolar acidification and important for copper and iron metal ion homeostasis; Belongs to the V-ATPase proteolipid subunit family. (160 aa)
VMA8Subunit D of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; plays a role in the coupling of proton transport and ATP hydrolysis; the V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase) has eight subunits. (256 aa)
VMA7Subunit F of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; required for the V1 domain to assemble onto the vacuolar membrane; the V1 peripheral membrane domain of vacuolar H+-ATPase (V-ATPase) has eight subunits. (118 aa)
GTR2GTP-binding protein GTR2; Subunit of a TORC1-stimulating GTPase complex; subunit of the Gtr1-Gtr2 GTPase complex that stimulates TORC1 in response to amino acid stimulation; stimulates the GTPase activity of Gtr1p; negatively regulates the Ran/Tc4 GTPase cycle; activates transcription; tethered to the vacuolar membrane as part of the EGO complex (EGOC); required for sorting of Gap1p; activated by the the Lst4p-Lst7p GAP complex; localizes to cytoplasm and to chromatin; homolog of human RagC and. (341 aa)
VMA16Subunit c'' of the vacuolar ATPase; v-ATPase functions in acidification of the vacuole; one of three proteolipid subunits of the V0 domain. (213 aa)
VMA10Subunit G of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; involved in vacuolar acidification; the V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase) has eight subunits. (114 aa)
KOG1Subunit of TORC1; TORC1 is a rapamycin-sensitive complex involved in growth control that contains Tor1p or Tor2p, Lst8p and Tco89p; contains four HEAT repeats and seven WD-40 repeats; may act as a scaffold protein to couple TOR and its effectors; Belongs to the WD repeat RAPTOR family. (1557 aa)
VMA5Subunit C of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; required for the V1 domain to assemble onto the vacuolar membrane; the V1 peripheral membrane domain of vacuolar H+-ATPase (V-ATPase) has eight subunits. (392 aa)
TOR2Serine/threonine-protein kinase TOR2; PIK-related protein kinase and rapamycin target; subunit of TORC1, a complex that regulates growth in response to nutrients and TORC2, a complex that regulates cell-cycle dependent polarization of the actin cytoskeleton; involved in meiosis; TOR2 has a paralog, TOR1, that arose from the whole genome duplication. (2474 aa)
VMA6Subunit d of the V0 integral membrane domain of V-ATPase; part of the electrogenic proton pump found in the endomembrane system; required for V1 domain assembly on the vacuolar membrane; the V0 integral membrane domain of vacuolar H+-ATPase (V-ATPase) has five subunits. (345 aa)
GTR1GTP-binding protein GTR1; Subunit of a TORC1-stimulating GTPase complex; subunit of the heterodimeric Gtr1-Gtr2 GTPase complex that stimulates TORC1 in response to amino acid stimulation; tethered to the vacuolar membrane as part of the EGOC, a complex required for sorting of Gap1p and microautophagy; involved in phosphate transport and telomeric chromatin silencing; activated by the the Iml1p (GAP) subunit of the SEACIT complex; similar to human RagA and RagB. (310 aa)
STV1V-type proton ATPase subunit a, Golgi isoform; Subunit a of the vacuolar-ATPase V0 domain; one of two isoforms (Stv1p and Vph1p); Stv1p is located in V-ATPase complexes of the Golgi and endosomes while Vph1p is located in V-ATPase complexes of the vacuole; Belongs to the V-ATPase 116 kDa subunit family. (890 aa)
LST8Target of rapamycin complex subunit LST8; Protein required for the transport of Gap1p; required for the transport of amino acid permease Gap1p from the Golgi to the cell surface; component of the TOR signaling pathway; associates with both Tor1p and Tor2p; contains a WD-repeat. (303 aa)
VPH1Subunit a of vacuolar-ATPase V0 domain; one of two isoforms (Vph1p and Stv1p); Vph1p is located in V-ATPase complexes of the vacuole while Stv1p is located in V-ATPase complexes of the Golgi and endosomes; relative distribution to the vacuolar membrane decreases upon DNA replication stress; human homolog ATP6V0A4 implicated in renal tubular acidosis, can complement yeast null mutant. (840 aa)
VMA4Subunit E of the V1 domain of the vacuolar H+-ATPase (V-ATPase); V-ATPase is an electrogenic proton pump found throughout the endomembrane system; V1 domain has eight subunits; required for the V1 domain to assemble onto the vacuolar membrane; protein abundance increases in response to DNA replication stress. (233 aa)
VMA13Subunit H of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; serves as an activator or a structural stabilizer of the V-ATPase; the V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase) has eight subunits. (478 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (22%) [HD]